1,026 research outputs found

    Inefficient skeletal muscle oxidative function flanks impaired motor neuron recruitment in Amyotrophic Lateral Sclerosis during exercise

    Get PDF
    This study aimed to evaluate muscle oxidative function during exercise in amyotrophic lateral sclerosis patients (pALS) with non-invasive methods in order to assess if determinants of reduced exercise tolerance might match ALS clinical heterogeneity. 17 pALS, who were followed for 4 months, were compared with 13 healthy controls (CTRL). Exercise tolerance was assessed by an incremental exercise test on cycle ergometer measuring peak O2 uptake ([Formula: see text]O2peak), vastus lateralis oxidative function by near infrared spectroscopy (NIRS) and breathing pattern ([Formula: see text]E peak). pALS displayed: (1) 44% lower [Formula: see text]O2peak vs. CTRL (p\u2009<\u20090.0001), paralleled by a 43% decreased peak skeletal muscle oxidative function (p\u2009<\u20090.01), with a linear regression between these two variables (r2\u2009=\u20090.64, p\u2009<\u20090.0001); (2) 46% reduced [Formula: see text]Epeak vs. CTRL (p\u2009<\u20090.0001), achieved by using an inefficient breathing pattern (increasing respiratory frequency) from the onset until the end of exercise. Inefficient skeletal muscle O2 function, when flanking the impaired motor units recruitment, is a major determinant of pALS clinical heterogeneity and working capacity exercise tolerance. CPET and NIRS are useful tools for detecting early stages of oxidative deficiency in skeletal muscles, disclosing individual impairments in the O2 transport and utilization chain

    SINCONAPP: A Computerized learning tool for CBCT normal anatomy and variants of the nose and paranasal sinuses

    Get PDF
    1. Purpose To supply an useful learning tool aimed to interactively display on mobile devices normal anatomy and variants of the nose and paranasal sinuses as seen on CBCT images. 2. Methods and Materials Images Images of the nose and paranasal sinuses were derived by a study series acquired by a CBCT device. CBCT studies of the paranasal sinuses were acquired in patients referred for nasal obstruction or sinusitis with the following parameters: 90 kVp, 12.5 mA, 20 s rotation time, FOV 13 x 14.5 cm, 0.25 x 0.25 x 0.25 mm voxel size. Software The application has been developed for iOS based mobile devices through the platform XCode provided by Apple®, and it is developed using the Objective-C programming language. The application has been configured as Master-Detail. This configuration splits the mobile device display in two panels. The left panel displays a list of the interesting items, while the right panel shows the relative details. Touching an item from the menu on the left panel, the textual description is shown on the same side, while the panel on the right will show the relative image. The application allows interactively navigation through normal anatomy and variants of the nose and paranasal sinuses, as represented on CBCT images in axial, sagittal and coronal planes. Cross-reference images to localize the same anatomic structures on different section planes are available. The navigation is intuitive, with multiple shortcuts. Different labels have been proposed in accordance with the specific anatomic lessic of the district and current literature references. High image quality with a zooming tool are available. 4. Conclusion An App for IOs devices was developed, that can represent an useful educational tool for medical students, residents and continuous medical education in radiology and other medical specialties dealing with nose and paranasal sinuses. This interactive atlas based on CBCT images could be also an useful option to be implemented on CBCT software

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Gene transcripts associated with muscle strength: a CHARGE meta-analysis of 7,781 persons

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Background: Lower muscle strength in midlife predicts disability and mortality in later life. Bloodborne factors, including growth differentiation factor 11 (GDF11), have been linked to muscle regeneration in animal models. We aimed to identify gene transcripts associated with muscle strength in adults. Methods: Meta-analysis of whole blood gene expression (overall 17,534 unique genes measured by microarray) and hand-grip strength in four independent cohorts (n=7,781, ages: 20-104 years, weighted mean=56), adjusted for age, sex, height, weight, and leukocyte subtypes. Separate analyses were performed in subsets (older/younger than 60, male/female). Results: Expression levels of 221 genes were associated with strength after adjustment for cofactors and for multiple statistical testing, including ALAS2 (rate limiting enzyme in heme synthesis), PRF1 (perforin, a cytotoxic protein associated with inflammation), IGF1R and IGF2BP2 (both insulin like growth factor related). We identified statistical enrichment for hemoglobin biosynthesis, innate immune activation and the stress response. Ten genes were only associated in younger individuals, four in males only and one in females only. For example PIK3R2 (a negative regulator of PI3K/AKT growth pathway) was negatively associated with muscle strength in younger (=60 years). We also show that 115 genes (52%) have not previously been linked to muscle in NCBI PubMed abstracts Conclusions: This first large-scale transcriptome study of muscle strength in human adults confirmed associations with known pathways and provides new evidence for over half of the genes identified. There may be age and sex specific gene expression signatures in blood for muscle strength.Wellcome TrustFHS gene expression profiling was funded through the Division of Intramural Research (Principal Investigator, Daniel Levy), National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD. Dr. Murabito is supported by NIH grant R01AG029451. Dr. Kiel is supported by NIH R01 AR41398. The Framingham Heart Study is supported by National Heart, Lung, and Blood Institute contract N01-HC-25195.The InCHIANTI study was supported in part by the Intramural Research Program, National Institute on Aging, NIH, Baltimore MD USA. D.M. and L.W.H. were generously supported by a Wellcome Trust Institutional Strategic Support Award (WT097835MF). W.E.H. was funded by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) for the South West Peninsula. The views expressed in this publication are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health in EnglandThe infrastructure for the NESDA study (www.nesda.nl) is funded through the Geestkracht program of the Netherlands Organisation for Health Research and Development (Zon-Mw, grant number 10-000-1002) and is supported by participating universities and mental health care organizations (VU University Medical Center, GGZ inGeest, Arkin, Leiden University Medical Center, GGZ Rivierduinen, University Medical Center Groningen, Lentis, GGZ Friesland, GGZ Drenthe, Scientific Institute for Quality of Healthcare (IQ healthcare), Netherlands Institute for Health Services Research (NIVEL) and Netherlands Institute of Mental Health and Addiction (Trimbos Institute).The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Netherlands Organisation of Scientific Research NWO Investments (nr. 175.010.2005.011, 911-03-012), the Research Institute for Diseases in the Elderly (014-93- 28 015; RIDE2), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The authors are grateful to the study participants, the staff from the Rotterdam Study and the participating general practitioners and pharmacists. The generation and management of RNA-expression array data for the Rotterdam Study was executed and funded by the Human Genotyping Facility of the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, the Netherlands. We thank Marjolein Peters, MSc, Ms. Mila Jhamai, Ms. Jeannette M. Vergeer-Drop, Ms. Bernadette van Ast-Copier, Mr. Marijn Verkerk and Jeroen van Rooij, BSc for their help in creating the RNA array expression databaseSHIP is part of the Community Medicine Research net of the University of Greifswald, Germany, which is funded by the Federal Ministry of Education and Research (grants no. 01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West Pomerania, and the network ‘Greifswald Approach to Individualized Medicine (GANI_MED)’ funded by the Federal Ministry of Education and Research (grant 03IS2061A). The University of Greifswald is a member of the 'Center of Knowledge Interchange' program of the Siemens AG and the Caché Campus program of the InterSystems GmbH

    Human longevity is influenced by many genetic variants: evidence from 75,000 UK Biobank participants

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Variation in human lifespan is 20 to 30% heritable in twins but few genetic variants have been identified. We undertook a Genome Wide Association Study (GWAS) using age at death of parents of middle-aged UK Biobank participants of European decent (n=75,244 with father's and/or mother's data, excluding early deaths). Genetic risk scores for 19 phenotypes (n=777 proven variants) were also tested. In GWAS, a nicotine receptor locus(CHRNA3, previously associated with increased smoking and lung cancer) was associated with fathers' survival. Less common variants requiring further confirmation were also identified. Offspring of longer lived parents had more protective alleles for coronary artery disease, systolic blood pressure, body mass index, cholesterol and triglyceride levels, type-1 diabetes, inflammatory bowel disease and Alzheimer's disease. In candidate analyses, variants in the TOMM40/APOE locus were associated with longevity, but FOXO variants were not. Associations between extreme longevity (mother >=98 years, fathers >=95 years, n=1,339) and disease alleles were similar, with an additional association with HDL cholesterol (p=5.7x10-3). These results support a multiple protective factors model influencing lifespan and longevity (top 1% survival) in humans, with prominent roles for cardiovascular-related pathways. Several of these genetically influenced risks, including blood pressure and tobacco exposure, are potentially modifiable.This work was generously funded by an award to DM, TF, AM, LH and CB by the Medical Research Council MR/M023095/1. This research has been conducted using the UK Biobank Resource, under application 1417. The authors wish to thank the UK Biobank participants and coordinators for this unique dataset. S.E.J. is funded by the Medical Research Council (grant: MR/M005070/1). J.T. is funded by a Diabetes Research and Wellness Foundation Fellowship. R.B. is funded by the Wellcome Trust and Royal Society grant: 104150/Z/14/Z. M.A.T., M.N.W. and A.M. are supported by the Wellcome Trust Institutional Strategic Support Award (WT097835MF). R.M.F. is a Sir Henry Dale Fellow (Wellcome Trust and Royal Society grant: 104150/Z/14/Z). A.R.W. H.Y., and T.M.F. are supported by the European Research Council grant: 323195:GLUCOSEGENES-FP7-IDEAS-ERC. The funders had no influence on study design, data collection and analysis, decision to publish, or preparation of the manuscript. The Framingham Heart Study is supported by Contract No. N01-HC-25195 and HHSN268201500001I and its contract with Affymetrix, Inc for genotyping services (Contract No. N02-HL-6-4278). The phenotypegenotype association analyses were supported by National Institute of Aging R01AG29451. This work has made use of the resources provided by the University of Exeter Science Strategy and resulting Systems Biology initiative. Primarily these include high-performance computing facilities managed by Konrad Paszkiewicz of the College of Environmental and Life Sciences and Pete Leggett of the University of Exeter Academics services unit

    Independent susceptibility markers for atrial fibrillation on chromosome 4q25

    Get PDF
    Background-: Genetic variants on chromosome 4q25 are associated with atrial fibrillation (AF). We sought to determine whether there is more than 1 susceptibility signal at this locus. Methods and results-: Thirty-four haplotype-tagging single-nucleotide polymorphisms (SNPs) at the 4q25 locus were genotyped in 790 case and 1177 control subjects from Massachusetts General Hospital and tested for association with AF. We replicated SNPs associated with AF after adjustment for the most significantly associated SNP in 5066 case and 30 661 referent subjects from the German Competence Network for Atrial Fibrillation, Atherosclerosis Risk In Communities Study, Cleveland Clinic Lone AF Study, Cardiovascular Health Study, and Rotterdam Study. All subjects were of European ancestry. A multimarker risk score composed of SNPs that tagged distinct AF susceptibility signals was constructed and tested for association with AF, and all results were subjected to meta-analysis. The previously reported SNP, rs2200733, was most significantly associated with AF (minor allele odds ratio 1.80, 95% confidence interval 1.50 to 2.15, P=1.2×10) in the discovery sample. Adjustment for rs2200733 genotype revealed 2 additional susceptibility signals marked by rs17570669 and rs3853445. A graded risk of AF was observed with an increasing number of AF risk alleles at SNPs that tagged these 3 susceptibility signals. Conclusions-: We identified 2 novel AF susceptibility signals on chromosome 4q25. Consideration of multiple susceptibility signals at chromosome 4q25 identifies individuals with an increased risk of AF and may localize regulatory elements at the locus with biological relevance in the pathogenesis of AF

    Unraveling Moral Reasoning in Amyotrophic Lateral Sclerosis: How Emotional Detachment Modifies Moral Judgment

    Get PDF
    In the last decade, scientific literature provided solid evidence of cognitive deficits in amyotrophic lateral sclerosis (ALS) patients and their effects on end-life choices. However, moral cognition and judgment are still poorly investigated in this population. Here we aimed at evaluating both socio-cognitive and socio-affective components of moral reasoning in a sample of 28 ALS patients. Patients underwent clinical and neuropsychological evaluation including basic cognitive and social cognition measures. Additionally, we administered an experimental task including moral dilemmas, with instrumental and incidental conditions. Patients’ performances were compared with a control group [healthy control (HC)], including 36 age-, gender-, and education-matched healthy subjects. Despite that the judgment pattern was comparable in ALS and HC, patients resulted less prone to carry out a moral transgression compared to HC. Additionally, ALS patients displayed higher levels of moral permissibility and lower emotional arousal, with similar levels of engagement in both instrumental and incidental conditions. Our findings expanded the current literature about cognitive deficits in ALS, showing that in judging moral actions, patients may present non-utilitarian choices and emotion flattening. Such a decision-making profile may have relevant implications in applying moral principles in real-life situations and for the judgment of end-of-life treatments and care in clinical settings
    corecore