345 research outputs found

    Relaxation dynamics and colossal magnetocapacitive effect in CdCr2S4

    Full text link
    A thorough investigation of the relaxational dynamics in the recently discovered multiferroic CdCr2S4 showing a colossal magnetocapacitive effect has been performed. Broadband dielectric measurements without and with external magnetic fields up to 10 T provide clear evidence that the observed magnetocapacitive effect stems from enormous changes of the relaxation dynamics induced by the development of magnetic order.Comment: 4 pages, 4 figure

    Magnetic-field induced multiferroicity in a quantum critical frustrated spin liquid

    Get PDF
    Dielectric spectroscopy is used to check for the onset of polar order in the quasi one-dimensional quantum spin system Sul-Cu2Cl4 when passing from the spin-liquid state into the ordered spiral phase in an external magnetic field. We find clear evidence for multiferroicity in this material and treat in detail its H-T phase diagram close to the quantum-critical regime.Comment: 5 pages, 4 figures. Revised according to suggestions of referee

    Polar and magnetic order in GaV4Se8

    Full text link
    In the present work, we provide results from specific heat, magnetic susceptibility, dielectric constant, ac conductivity, and electrical polarization measurements performed on the lacunar spinel GaV4Se8. With decreasing temperature, we observe a transition from the paraelectric and paramagnetic cubic state into a polar, probably ferroelectric state at 42 K followed by magnetic ordering at 18 K. The polar transition is likely driven by the Jahn-Teller effect due to the degeneracy of the V4 cluster orbitals. The excess polarization arising in the magnetic phase indicates considerable magnetoelectric coupling. Overall, the behavior of GaV4Se8 in many respects is similar to that of the skyrmion host GaV4S8, exhibiting a complex interplay of orbital, spin, lattice, and polar degrees of freedom. However, its dielectric behavior at the polar transition markedly differs from that of the Jahn-Teller driven ferroelectric GeV4S8, which can be ascribed to the dissimilar electronic structure of the Ge compound.Comment: 7 pages, 6 figures. Revised version according to suggestions of referee

    Polar Dynamics at the Jahn-Teller Transition in Ferroelectric GaV4S8

    Full text link
    We present a dielectric spectroscopy study of the polar dynamics linked to the orbitally driven ferroelectric transition in the skyrmion host GaV4S8. By combining THz and MHz-GHz spectroscopy techniques, we succeed in detecting the relaxational dynamics arising from coupled orbital and polar fluctuations in this material and traced its temperature dependence in the paraelectric as well as in the ferroelectric phase. The relaxation time significantly increases when approaching the critical temperature from both sides of the transition. It is natural to assume that these polar fluctuations map the orbital dynamics at the Jahn-Teller transition. Due to the first-order character of the orbital-ordering transition, the relaxation time shows an enormous jump of about five orders of magnitude at the polar and structural phase transition.Comment: 5 pages, 4 figure

    Structural, magnetic, electric, dielectric, and thermodynamic properties of multiferroic GeV4S8

    Full text link
    The lacunar spinel GeV4S8 undergoes orbital and ferroelectric ordering at the Jahn-Teller transition around 30 K and exhibits antiferromagnetic order below about 14 K. In addition to this orbitally driven ferroelectricity, lacunar spinels are an interesting material class, as the vanadium ions form V4 clusters representing stable molecular entities with a common electron distribution and a well-defined level scheme of molecular states resulting in a unique spin state per V4 molecule. Here we report detailed x-ray, magnetic susceptibility, electrical resistivity, heat capacity, thermal expansion, and dielectric results to characterize the structural, electric, dielectric, magnetic, and thermodynamic properties of this interesting material, which also exhibits strong electronic correlations. From the magnetic susceptibility, we determine a negative Curie-Weiss temperature, indicative for antiferromagnetic exchange and a paramagnetic moment close to a spin S = 1 of the V4 molecular clusters. The low-temperature heat capacity provides experimental evidence for gapped magnon excitations. From the entropy release, we conclude about strong correlations between magnetic order and lattice distortions. In addition, the observed anomalies at the phase transitions also indicate strong coupling between structural and electronic degrees of freedom. Utilizing dielectric spectroscopy, we find the onset of significant dispersion effects at the polar Jahn-Teller transition. The dispersion becomes fully suppressed again with the onset of spin order. In addition, the temperature dependencies of dielectric constant and specific heat possibly indicate a sequential appearance of orbital and polar order.Comment: 15 pages, 9 figure

    Propylene Carbonate Reexamined: Mode-Coupling β\beta Scaling without Factorisation ?

    Full text link
    The dynamic susceptibility of propylene carbonate in the moderately viscous regime above TcT_{\rm c} is reinvestigated by incoherent neutron and depolarised light scattering, and compared to dielectric loss and solvation response. Depending on the strength of α\alpha relaxation, a more or less extended β\beta scaling regime is found. Mode-coupling fits yield consistently λ=0.72\lambda=0.72 and Tc=182T_{\rm c}=182 K, although different positions of the susceptibility minimum indicate that not all observables have reached the universal asymptotics

    Colossal dielectric constants in transition-metal oxides

    Get PDF
    Many transition-metal oxides show very large ("colossal") magnitudes of the dielectric constant and thus have immense potential for applications in modern microelectronics and for the development of new capacitance-based energy-storage devices. In the present work, we thoroughly discuss the mechanisms that can lead to colossal values of the dielectric constant, especially emphasising effects generated by external and internal interfaces, including electronic phase separation. In addition, we provide a detailed overview and discussion of the dielectric properties of CaCu3Ti4O12 and related systems, which is today's most investigated material with colossal dielectric constant. Also a variety of further transition-metal oxides with large dielectric constants are treated in detail, among them the system La2-xSrxNiO4 where electronic phase separation may play a role in the generation of a colossal dielectric constant.Comment: 31 pages, 18 figures, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom

    Crossover behavior and multi-step relaxation in a schematic model of the cut-off glass transition

    Get PDF
    We study a schematic mode-coupling model in which the ideal glass transition is cut off by a decay of the quadratic coupling constant in the memory function. (Such a decay, on a time scale tau_I, has been suggested as the likely consequence of activated processes.) If this decay is complete, so that only a linear coupling remains at late times, then the alpha relaxation shows a temporal crossover from a relaxation typical of the unmodified schematic model to a final strongly slower-than-exponential relaxation. This crossover, which differs somewhat in form from previous schematic models of the cut-off glass transition, resembles light-scattering experiments on colloidal systems, and can exhibit a `slower-than-alpha' relaxation feature hinted at there. We also consider what happens when a similar but incomplete decay occurs, so that a significant level of quadratic coupling remains for t>>tau_I. In this case the correlator acquires a third, weaker relaxation mode at intermediate times. This empirically resembles the beta process seen in many molecular glass formers. It disappears when the initial as well as the final quadratic coupling lies on the liquid side of the glass transition, but remains present even when the final coupling is only just inside the liquid (so that the alpha relaxation time is finite, but too long to measure). Our results are suggestive of how, in a cut-off glass, the underlying `ideal' glass transition predicted by mode-coupling theory can remain detectable through qualitative features in dynamics.Comment: 14 pages revtex inc 10 figs; submitted to pr

    On the multiferroic skyrmion-host GaV4S8

    Get PDF
    The lacunar spinel GaV4S8 exhibits orbital ordering at 44 K and shows a complex magnetic phase diagram below 12.7 K, which includes ferromagnetic and cycloidal spin order. At low but finite external magnetic fields, N\'eel-type skyrmions are formed in this material. Skyrmions are whirl-like spin vortices that have received great theoretical interest because of their non-trivial spin topology and that are also considered as basic entities for new data-storage technologies. Interestingly, we found that the orbitally ordered phase shows sizable ferroelectric polarization and that excess spin-driven polarizations appear in all magnetic phases, including the skyrmion-lattice phase. Hence, GaV4S8 shows simultaneous magnetic and polar order and belongs to the class of multiferroics, materials that attracted enormous attention in recent years. Here, we summarize the existing experimental information on the magnetic, electronic, and dielectric properties of GaV4S8. By performing detailed magnetic susceptibility, resistivity, specific heat, and dielectric experiments, we complement the low-temperature phase diagram. Specifically, we show that the low-temperature and low-field ground state of GaV4S8 seems to have a more complex spin configuration than purely collinear ferromagnetic spin order. In addition, at the structural Jahn-Teller transition the magnetic exchange interaction changes from antiferromagnetic to ferromagnetic. We also provide experimental evidence that the vanadium V4 clusters in GaV4S8 can be regarded as molecular units with spin 1/2. However, at high temperatures deviations in the susceptibility show up, indicating that either the magnetic moments of the vanadium atoms fluctuate independently or excited states of the V4 molecule become relevant.Comment: 17 pages, 10 figures, submitted to Phil. Ma

    Lattice dielectric response of CdCu{3}Ti{4}O{12} and of CaCu{3}Ti{4}O{12} from first principles

    Full text link
    Structural, vibrational, and lattice dielectric properties of CdCu{3}Ti{4}O{12} are studied using density-functional theory within the local spin-density approximation, and the results are compared with those computed previously for CaCu{3}Ti{4}O{12}. Replacing Ca with Cd is found to leave many calculated quantities largely unaltered, although significant differences do emerge in zone-center optical phonon frequencies and mode effective charges. The computed phonon frequencies of CdCu{3}Ti{4}O{12} are found to be in excellent agreement with experiment, and the computed lattice contribution to the intrinsic static dielectric constant (~60) also agrees exceptionally well with a recent optical absorption experiment. These results provide further support for a picture in which the lattice dielectric response is essentially conventional, suggesting an extrinsic origin for the anomalous low-frequency dielectric response recently observed in both materials.Comment: 5 pages; uses REVTEX macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/lh_cdct/index.htm
    corecore