47,358 research outputs found

    Entanglement and quantum discord dynamics of two atoms under practical feedback control

    Full text link
    We study the dynamics of two identical atoms resonantly coupled to a single-mode cavity under practical feedback control, and focus on the detection inefficiency. The entanglement is induced to vanish in finite time by the inefficiency of detection. Counterintuitively, the asymptotic entanglement and quantum discord can be increased by the inefficiency of detection. The noise of detection triggers control field to create entanglement and discord when no photon are emitted from the atoms. Furthermore, sudden change happens to the dynamics of entanglement.Comment: 5 pages, 4 figure

    Correlation of mechanical factors and gallbladder pain

    Get PDF
    Acalculous biliary pain occurs in patients with no gallstones, but is similar to that experienced by patients with gallstones. Surgical removal of the gallbladder (GB) in these patients is only successful in providing relief of symptoms to about half of those operated on, so a reliable pain-prediction model is needed. In this paper, a mechanical model is developed for the human biliary system during the emptying phase, based on a clinical test in which GB volume changes are measured in response to a standard stimulus and a recorded pain profile. The model can describe the bile emptying behaviour, the flow resistance in the biliary ducts, the peak total stress, including the passive and active stresses experienced by the GB during emptying. This model is used to explore the potential link between GB pain and mechanical factors. It is found that the peak total normal stress may be used as an effective pain indicator for GB pain. When this model is applied to clinical data of volume changes due to Cholecystokinin stimulation and pain from 37 patients, it shows a promising success rate of 88.2% in positive pain prediction
    corecore