61,504 research outputs found
CsCl-Type Compounds in Binary Alloys of Rare-Earth Metals with Zinc and Copper
The CsCl-type structure has been previously reported in alloys of copper with yttrium, gadolinium, and erbium, [1] and of zinc with lanthanum, cerium, and praesodymium. [2] The present investigation has uncovered five additional phases in copper-rare-earth alloys and nine in zinc-rare-earth alloys
A Tri-band-notched UWB Antenna with Low Mutual Coupling between the Band-notched Structures
A compact printed U-shape ultra-wideband (UWB) antenna with triple band-notched characteristics is presented. The proposed antenna, with compact size of 24×33 mm2, yields an impedance bandwidth of 2.8-12GHz for VSWR<2, except the notched bands. The notched bands are realized by introducing two different types of slots. Two C-shape half-wavelength slots are etched on the radiating patch to obtain two notched bands in 3.3-3.7GHz for WiMAX and 7.25-7.75GHz for downlink of X-band satellite communication systems. In order to minimize the mutual coupling between the band-notched structures, the middle notched band in 5-6GHz for WLAN is achieved by using a U-slot defected ground structure. The parametric study is carried out to understand the mutual coupling. Surface current distributions and equivalent circuit are used to illustrate the notched mechanism. The performance of this antenna both by simulation and by experiment indicates that the proposed antenna is suitable and a good candidate for UWB applications
Dynamics of conduction blocks in a model of paced cardiac tissue
We study numerically the dynamics of conduction blocks using a detailed
electrophysiological model. We find that this dynamics depends critically on
the size of the paced region. Small pacing regions lead to stationary
conduction blocks while larger pacing regions can lead to conduction blocks
that travel periodically towards the pacing region. We show that this
size-dependence dynamics can lead to a novel arrhythmogenic mechanism.
Furthermore, we show that the essential phenomena can be captured in a much
simpler coupled-map model.Comment: 8 pages 6 figure
Bound States and Critical Behavior of the Yukawa Potential
We investigate the bound states of the Yukawa potential , using different algorithms: solving the Schr\"odinger
equation numerically and our Monte Carlo Hamiltonian approach. There is a
critical , above which no bound state exists. We study the
relation between and for various angular momentum quantum
number , and find in atomic units, , with , ,
, and .Comment: 15 pages, 12 figures, 5 tables. Version to appear in Sciences in
China
Harmonically trapped fermions in two dimensions: ground-state energy and contact of SU(2) and SU(4) systems via nonuniform lattice Monte Carlo
We study harmonically trapped, unpolarized fermion systems with attractive
interactions in two spatial dimensions with spin degeneracies Nf = 2 and 4 and
N/Nf = 1, 3, 5, and 7 particles per flavor. We carry out our calculations using
our recently proposed quantum Monte Carlo method on a nonuniform lattice. We
report on the ground-state energy and contact for a range of couplings, as
determined by the binding energy of the two-body system, and show explicitly
how the physics of the Nf-body sector dominates as the coupling is increased.Comment: 5 pages, 4 figure
CsCl-type compounds in binary alloys of rare-earth metals with gold and silver
In binary alloys of silver with Sm, Tb, Ho, and Tm, and of gold with Y, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, and Tm, intermediate phases containing stoichiometric proportions of the two metals were found to crystallize into the CsCl (B2)-type structure. The lattice parameters of these phases are reported and a correlation has been found between these lattice parameters and the trivalent ionic radii of the rare-earth metals
The millimeter-wave properties of superconducting microstrip lines
We have developed a novel technique for making high quality measurements of the millimeter-wave properties of superconducting thin-film microstrip transmission lines. Our experimental technique currently covers the 75-100 GHz band. The method is based on standing wave resonances in an open ended transmission line. We obtain information on the phase velocity and loss of the microstrip. Our data for Nb/SiO/Nb lines, taken at 4.2 K and 1.6 K, can be explained by a single set of physical parameters. Our preliminary conclusion is that the loss is dominated by the SiO dielectric, with a temperature-independent loss tangent of 5.3 ± 0.5 x 10^(-3) for our samples
- …
