468 research outputs found

    Traffic-related air pollution and obesity formation in children: a longitudinal, multilevel analysis.

    Get PDF
    BackgroundBiologically plausible mechanisms link traffic-related air pollution to metabolic disorders and potentially to obesity. Here we sought to determine whether traffic density and traffic-related air pollution were positively associated with growth in body mass index (BMI = kg/m2) in children aged 5-11 years.MethodsParticipants were drawn from a prospective cohort of children who lived in 13 communities across Southern California (N = 4550). Children were enrolled while attending kindergarten and first grade and followed for 4 years, with height and weight measured annually. Dispersion models were used to estimate exposure to traffic-related air pollution. Multilevel models were used to estimate and test traffic density and traffic pollution related to BMI growth. Data were collected between 2002-2010 and analyzed in 2011-12.ResultsTraffic pollution was positively associated with growth in BMI and was robust to adjustment for many confounders. The effect size in the adjusted model indicated about a 13.6% increase in annual BMI growth when comparing the lowest to the highest tenth percentile of air pollution exposure, which resulted in an increase of nearly 0.4 BMI units on attained BMI at age 10. Traffic density also had a positive association with BMI growth, but this effect was less robust in multivariate models.ConclusionsTraffic pollution was positively associated with growth in BMI in children aged 5-11 years. Traffic pollution may be controlled via emission restrictions; changes in land use that promote jobs-housing balance and use of public transit and hence reduce vehicle miles traveled; promotion of zero emissions vehicles; transit and car-sharing programs; or by limiting high pollution traffic, such as diesel trucks, from residential areas or places where children play outdoors, such as schools and parks. These measures may have beneficial effects in terms of reduced obesity formation in children

    Air Pollution Exposure Assessment for Epidemiologic Studies of Pregnant Women and Children: Lessons Learned from the Centers for Children’s Environmental Health and Disease Prevention Research

    Get PDF
    The National Children’s Study is considering a wide spectrum of airborne pollutants that are hypothesized to potentially influence pregnancy outcomes, neurodevelopment, asthma, atopy, immune development, obesity, and pubertal development. In this article we summarize six applicable exposure assessment lessons learned from the Centers for Children’s Environmental Health and Disease Prevention Research that may enhance the National Children’s Study: a) Selecting individual study subjects with a wide range of pollution exposure profiles maximizes spatial-scale exposure contrasts for key pollutants of study interest. b) In studies with large sample sizes, long duration, and diverse outcomes and exposures, exposure assessment efforts should rely on modeling to provide estimates for the entire cohort, supported by subject-derived questionnaire data. c) Assessment of some exposures of interest requires individual measurements of exposures using snapshots of personal and microenvironmental exposures over short periods and/or in selected microenvironments. d) Understanding issues of spatial–temporal correlations of air pollutants, the surrogacy of specific pollutants for components of the complex mixture, and the exposure misclassification inherent in exposure estimates is critical in analysis and interpretation. e) “Usual” temporal, spatial, and physical patterns of activity can be used as modifiers of the exposure/outcome relationships. f) Biomarkers of exposure are useful for evaluation of specific exposures that have multiple routes of exposure. If these lessons are applied, the National Children’s Study offers a unique opportunity to assess the adverse effects of air pollution on interrelated health outcomes during the critical early life period

    Crystalline silicate dust around evolved stars I. The sample stars

    Get PDF
    This is the first paper in a series of three where we present the first comprehensive inventory of solid state emission bands observed in a sample of 17 oxygen-rich circumstellar dust shells surrounding evolved stars. The data were taken with the Short and Long Wavelength Spectrographs on board of the Infrared Space Observatory (ISO) and cover the 2.4 to 195 micron wavelength range. The spectra show the presence of broad 10 and 18 micron bands that can be attributed to amorphous silicates. In addition, at least 49 narrow bands are found whose position and width indicate they can be attributed to crystalline silicates. Almost all of these bands were not known before ISO. We have measured the peak positions, widths and strengths of the individual, continuum subtracted bands. Based on these measurements, we were able to order the spectra in sequence of decreasing crystalline silicate band strength. We found that the strength of the emission bands correlates with the geometry of the circumstellar shell, as derived from direct imaging or inferred from the shape of the spectral energy distribution. This naturally divides the sample into objects that show a disk-like geometry (strong crystalline silicate bands), and objects whose dust shell is characteristic of an outflow (weak crystalline silicate bands). All stars with the 33.6 micron forsterite band stronger than 20 percent over continuum are disk sources. We define spectral regions (called complexes) where a concentration of emission bands is evident, at 10, 18, 23, 28, 33, 40 and 60 micron. We derive average shapes for these complexes and compare these to the individual band shapes of the programme stars.Comment: 41 pages, 20 figures, accepted by A&A. Tables 4 to 20 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A

    Exposure to Traffic-related Air Pollution During Pregnancy and Term Low Birth Weight: Estimation of Causal Associations in a Semiparametric Model

    Get PDF
    Traffic-related air pollution is recognized as an important contributor to health problems. Epidemiologic analyses suggest that prenatal exposure to traffic-related air pollutants may be associated with adverse birth outcomes; however, there is insufficient evidence to conclude that the relation is causal. The Study of Air Pollution, Genetics and Early Life Events comprises all births to women living in 4 counties in California's San Joaquin Valley during the years 2000-2006. The probability of low birth weight among full-term infants in the population was estimated using machine learning and targeted maximum likelihood estimation for each quartile of traffic exposure during pregnancy. If everyone lived near high-volume freeways (approximated as the fourth quartile of traffic density), the estimated probability of term low birth weight would be 2.27% (95% confidence interval: 2.16, 2.38) as compared with 2.02% (95% confidence interval: 1.90, 2.12) if everyone lived near smaller local roads (first quartile of traffic density). Assessment of potentially causal associations, in the absence of arbitrary model assumptions applied to the data, should result in relatively unbiased estimates. The current results support findings from previous studies that prenatal exposure to traffic-related air pollution may adversely affect birth weight among full-term infants

    A Longitudinal Cohort Study of Body Mass Index and Childhood Exposure to Secondhand Tobacco Smoke and Air Pollution: The Southern California Children’s Health Study

    Get PDF
    BackgroundChildhood body mass index (BMI) and obesity prevalence have been associated with exposure to secondhand smoke (SHS), maternal smoking during pregnancy, and vehicular air pollution. There has been little previous study of joint BMI effects of air pollution and tobacco smoke exposure.MethodsInformation on exposure to SHS and maternal smoking during pregnancy was collected on 3,318 participants at enrollment into the Southern California Children's Health Study. At study entry at average age of 10 years, residential near-roadway pollution exposure (NRP) was estimated based on a line source dispersion model accounting for traffic volume, proximity, and meteorology. Lifetime exposure to tobacco smoke was assessed by parent questionnaire. Associations with subsequent BMI growth trajectory based on annual measurements and attained BMI at 18 years of age were assessed using a multilevel modeling strategy.ResultsMaternal smoking during pregnancy was associated with estimated BMI growth over 8-year follow-up (0.72 kg/m2 higher; 95% CI: 0.14, 1.31) and attained BMI (1.14 kg/m2 higher; 95% CI: 0.66, 1.62). SHS exposure before enrollment was positively associated with BMI growth (0.81 kg/m2 higher; 95% CI: 0.36, 1.27) and attained BMI (1.23 kg/m2 higher; 95% CI: 0.86, 1.61). Growth and attained BMI increased with more smokers in the home. Compared with children without a history of SHS and NRP below the median, attained BMI was 0.80 kg/m2 higher (95% CI: 0.27, 1.32) with exposure to high NRP without SHS; 0.85 kg/m2 higher (95% CI: 0.43, 1.28) with low NRP and a history of SHS; and 2.15 kg/m2 higher (95% CI: 1.52, 2.77) with high NRP and a history of SHS (interaction p-value 0.007). These results suggest a synergistic effect.ConclusionsOur findings strengthen emerging evidence that exposure to tobacco smoke and NRP contribute to development of childhood obesity and suggest that combined exposures may have synergistic effects

    Prenatal air pollution exposure and ultrasound measures of fetal growth in Los Angeles, California

    Get PDF
    BackgroundFew previous studies examined the impact of prenatal air pollution exposures on fetal development based on ultrasound measures during pregnancy.MethodsIn a prospective birth cohort of more than 500 women followed during 1993-1996 in Los Angeles, California, we examined how air pollution impacts fetal growth during pregnancy. Exposure to traffic related air pollution was estimated using CALINE4 air dispersion modeling for nitrogen oxides (NOx) and a land use regression (LUR) model for nitrogen monoxide (NO), nitrogen dioxide (NO2) and NOx. Exposures to carbon monoxide (CO), NO2, ozone (O3) and particles <10μm in aerodynamic diameter (PM10) were estimated using government monitoring data. We employed a linear mixed effects model to estimate changes in fetal size at approximately 19, 29 and 37 weeks gestation based on ultrasound.ResultsExposure to traffic-derived air pollution during 29 to 37 weeks was negatively associated with biparietal diameter at 37 weeks gestation. For each interquartile range (IQR) increase in LUR-based estimates of NO, NO2 and NOx, or freeway CALINE4 NOx we estimated a reduction in biparietal diameter of 0.2-0.3mm. For women residing within 5km of a monitoring station, we estimated biparietal diameter reductions of 0.9-1.0mm per IQR increase in CO and NO2. Effect estimates were robust to adjustment for a number of potential confounders. We did not observe consistent patterns for other growth endpoints we examined.ConclusionsPrenatal exposure to traffic-derived pollution was negatively associated with fetal head size measured as biparietal diameter in late pregnancy

    Traffic, Susceptibility, and Childhood Asthma

    Get PDF
    Results from studies of traffic and childhood asthma have been inconsistent, but there has been little systematic evaluation of susceptible subgroups. In this study, we examined the relationship of local traffic-related exposure and asthma and wheeze in southern California school children (5–7 years of age). Lifetime history of doctor-diagnosed asthma and prevalent asthma and wheeze were evaluated by questionnaire. Parental history of asthma and child’s history of allergic symptoms, sex, and early-life exposure (residence at the same home since 2 years of age) were examined as susceptibility factors. Residential exposure was assessed by proximity to a major road and by modeling exposure to local traffic-related pollutants. Residence within 75 m of a major road was associated with an increased risk of lifetime asthma [odds ratio (OR) = 1.29; 95% confidence interval (CI), 1.01–1.86], prevalent asthma (OR = 1.50; 95% CI, 1.16–1.95), and wheeze (OR = 1.40; 95% CI, 1.09–1.78). Susceptibility increased in long-term residents with no parental history of asthma for lifetime asthma (OR = 1.85; 95% CI, 1.11–3.09), prevalent asthma (OR = 2.46; 95% CI, 0.48–4.09), and recent wheeze (OR = 2.74; 95% CI, 1.71–4.39). The higher risk of asthma near a major road decreased to background rates at 150–200 m from the road. In children with a parental history of asthma and in children moving to the residence after 2 years of age, there was no increased risk associated with exposure. Effect of residential proximity to roadways was also larger in girls. A similar pattern of effects was observed with traffic-modeled exposure. These results indicate that residence near a major road is associated with asthma. The reason for larger effects in those with no parental history of asthma merits further investigation
    corecore