468 research outputs found
Analisa Sensitivitas Parameter - Parameter yang Mempengaruhi Rencana Anggaran Biaya (RAB) Perumahan Cluster di Pekanbaru (Studi Kasus Perumahan Sari Residence)
Pekanbaru is one of the provincial capital in Indonesian that has rapid population growth about 4% each year. One of thedevelopment thing is the rapidly growing field of building construction, especially in the field of housing. Free trade competition in which the selling price as set by the government. It is necessary to identify the parameters that affect the Budget Plan (RAB) in Type of Cluster House development. Sensitivity analysis is needed to determine how sensitive a decision to change the parameters that influence it. Criteria of the largest costs incurred is the cost of home work better than the average yield response of respondents as well as seen from the calculation of the RAB. RAB calculations obtained percentage of the cost of homework on the overall total cost for one (1) of housing units is 61.64%. Retrieved parameters that affect as many as 12 parameters namely: Wall Working, Roof Working, foundation working, concrete working, vast excess soil, deed of sell, Building Permits, Ownership Certificate, Electrical installation, Water Treatment Plan, Mainroad. So we need antisipasif action against these parameters
Magnetic Domain Patterns Depending on the Sweeping Rate of Magnetic Fields
The domain patterns in a thin ferromagnetic film are investigated in both
experiments and numerical simulations. Magnetic domain patterns under a zero
field are usually observed after an external magnetic field is removed. It is
demonstrated that the characteristics of the domain patterns depend on the
decreasing rate of the external field, although it can also depend on other
factors. Our numerical simulations and experiments show the following
properties of domain patterns: a sea-island structure appears when the field
decreases rapidly from the saturating field to the zero field, while a
labyrinth structure is observed for a slowly decreasing field. The mechanism of
the dependence on the field sweeping rate is discussed in terms of the concepts
of crystallization.Comment: 4 pages, 3 figure
Monte Carlo Simulation of Magnetization Reversal in Fe Sesquilayers on W(110)
Iron sesquilayers grown at room temperature on W(110) exhibit a pronounced
coercivity maximum near a coverage of 1.5 atomic monolayers. On lattices which
faithfully reproduce the morphology of the real films, a kinetic Ising model is
utilized to simulate the domain-wall motion. Simulations reveal that the
dynamics is dominated by the second-layer islands, which act as pinning
centers. The simulated dependencies of the coercivity on the film coverage, as
well as on the temperature and the frequency of the applied field, are very
similar to those measured in experiments. Unlike previous micromagnetic models,
the presented approach provides insight into the dynamics of the domain-wall
motion and clearly reveals the role of thermal fluctuations.Comment: Final version to appear in Phys. Rev. B. References to related works
added. 7 pages, 5 figures, RevTex, mpeg simulations available at
http://www.scri.fsu.edu/~rikvol
Kinetic roughening of surfaces: Derivation, solution and application of linear growth equations
We present a comprehensive analysis of a linear growth model, which combines
the characteristic features of the Edwards--Wilkinson and noisy Mullins
equations. This model can be derived from microscopics and it describes the
relaxation and growth of surfaces under conditions where the nonlinearities can
be neglected. We calculate in detail the surface width and various correlation
functions characterizing the model. In particular, we study the crossover
scaling of these functions between the two limits described by the combined
equation. Also, we study the effect of colored and conserved noise on the
growth exponents, and the effect of different initial conditions. The
contribution of a rough substrate to the surface width is shown to decay
universally as , where is
the time--dependent correlation length associated with the growth process,
is the initial roughness and the correlation length of the
substrate roughness, and is the surface dimensionality. As a second
application, we compute the large distance asymptotics of the height
correlation function and show that it differs qualitatively from the functional
forms commonly used in the intepretation of scattering experiments.Comment: 28 pages with 4 PostScript figures, uses titlepage.sty; to appear in
Phys. Rev.
Hysteresis and the dynamic phase transition in thin ferromagnetic films
Hysteresis and the non-equilibrium dynamic phase transition in thin magnetic
films subject to an oscillatory external field have been studied by Monte Carlo
simulation. The model under investigation is a classical Heisenberg spin system
with a bilinear exchange anisotropy in a planar thin film geometry with
competing surface fields. The film exhibits a non-equilibrium phase transition
between dynamically ordered and dynamically disordered phases characterized by
a critical temperature Tcd, whose location of is determined by the amplitude H0
and frequency w of the applied oscillatory field. In the presence of competing
surface fields the critical temperature of the ferromagnetic-paramagnetic
transition for the film is suppressed from the bulk system value, Tc, to the
interface localization-delocalization temperature Tci. The simulations show
that in general Tcd < Tci for the model film. The profile of the time-dependent
layer magnetization across the film shows that the dynamically ordered and
dynamically disordered phases coexist within the film for T < Tcd. In the
presence of competing surface fields, the dynamically ordered phase is
localized at one surface of the film.Comment: PDF file, 21 pages including 8 figure pages; added references,typos
added; to be published in PR
Analytical solution of generalized Burton--Cabrera--Frank equations for growth and post--growth equilibration on vicinal surfaces
We investigate growth on vicinal surfaces by molecular beam epitaxy making
use of a generalized Burton--Cabrera--Frank model. Our primary aim is to
propose and implement a novel analytical program based on a perturbative
solution of the non--linear equations describing the coupled adatom and dimer
kinetics. These equations are considered as originating from a fully
microscopic description that allows the step boundary conditions to be directly
formulated in terms of the sticking coefficients at each step. As an example,
we study the importance of diffusion barriers for adatoms hopping down
descending steps (Schwoebel effect) during growth and post-growth equilibration
of the surface.Comment: 16 pages, REVTeX 3.0, IC-DDV-94-00
Kinetic Ising model in an oscillating field: Finite-size scaling at the dynamic phase transition
We study hysteresis for a two-dimensional, spin-1/2, nearest-neighbor,
kinetic Ising ferromagnet in an oscillating field, using Monte Carlo
simulations. The period-averaged magnetization is the order parameter for a
proposed dynamic phase transition (DPT). To quantify the nature of this
transition, we present the first finite-size scaling study of the DPT for this
model. Evidence of a diverging correlation length is given, and we provide
estimates of the transition frequency and the critical indices ,
and .Comment: Accepted by Physical Review Letters. 9 page
- …
