357 research outputs found
Changes in the Mass Balance of the Greenland Ice Sheet in a Warming Climate During 2003-2009
Mass changes of the Greenland ice sheet (GIS) derived from ICESat and GRACE data both show that the net mass loss from GIS during 2003-2009 is about 175 Gt/year, which contributes 0.5mm/yr global sea-level rise. The rate of mass loss has increased significantly since the 1990's when the GIS was close to mass balance. Even though the GIS was close to mass balance during the 1990's, it was already showing characteristics of responding to8 warmer climate, specifically thinning at the margins and thickening inland at higher elevations. During 2003-2009, increased ice thinning due to increases in melting and acceleration of outlet glaciers began to strongly exceed the inland thickening from increases in accumulation. Over the entire GIS, the mass loss between the two periods, from increased melting and ice dynamics, increased by about 190 Gt/year while the mass gain, from increased precipitation and accumulation, increased by only about 15Gt/year. These ice changes occurred during a time when the temperature on GIS changed at rate of about 2K/decade. The distribution of elevation and mass changes derived from ICESat have high spatial resolution showing details over outlet glaciers, by drainage systems, and by elevation. However, information on the seasonal cycle of changes from ICESat data is limited, because the ICESat lasers were only operated during two to three campaigns per year of about 35 days duration each. In contrast, the temporal resolution of GRACE data, provided by the continuous data collection, is much better showing details of the seasonal cycle and the inter-annual variability. The differing sensitivity of the ICESat altimetry and the GRACE gravity methods to motion of the underlying bedrock from glacial isostatic adjustment (GIA) is used to evaluate the GIA corrections provided by models. The two data types are also combined to make estimates of the partitioning of the mass gains and losses among accumulation, melting, and ice discharge from outlet glaciers
Tests of Ocean-Tide Models by Analysis of Satellite-To-Satellite Range Measurements: An Update
Seven years of GRACE intersatellite range-rate measurements are used to test the new ocean tide model FES2014 and to compare against similar results obtained with earlier models. These qualitative assessments show that FES2014 represents a marked improvement in accuracy over its earlier incarnation, FES2012, with especially notable improvements in the Arctic Ocean for constituents K(sub 1) and S(sub 2). Degradation appears to have occurred in two anomalous regions: the Ross Sea for the O(sub 1) constituent and the Weddell Sea for M(sub 2)
Revision of the Atmospheric Delay Correction for ICESat-2 Laser Altimeter Ranges
In 2001 Herring and Quinn proposed the algorithm for correction for atmospheric delay to ICESat-1 GLAS laser altimeter. The purpose of this document is to provide a revision of the algorithm suitable for processing the data from ICESat-2 mission scheduled for launch in 2016. The goal of the revision is to provide a procedure for atmospheric delay correction that would be precise to 1 mm level. The actual accuracy of delay computation will be somewhat less, but it will be limited only by imperfection of the used numerical weather model
Simulation Study of a Follow-on Gravity Mission to GRACE
The gravity recovery and climate experiment (GRACE) has been providing monthly estimates of the Earth's time-variable gravity field since its launch in March 2002. The GRACE gravity estimates are used to study temporal mass variations on global and regional scales, which are largely caused by a redistribution of water mass in the Earth system. The accuracy of the GRACE gravity fields are primarily limited by the satellite-to-satellite range-rate measurement noise, accelerometer errors, attitude errors, orbit errors, and temporal aliasing caused by unmodeled high-frequency variations in the gravity signal. Recent work by Ball Aerospace and Technologies Corp., Boulder, CO has resulted in the successful development of an interferometric laser ranging system to specifically address the limitations of the K-band microwave ranging system that provides the satellite-to-satellite measurements for the GRACE mission. Full numerical simulations are performed for several possible configurations of a GRACE Follow-On (GFO) mission to determine if a future satellite gravity recovery mission equipped with a laser ranging system will provide better estimates of time-variable gravity, thus benefiting many areas of Earth systems research. The laser ranging system improves the range-rate measurement precision to approximately 0.6 nm/s as compared to approx. 0.2 micro-seconds for the GRACE K-band microwave ranging instrument. Four different mission scenarios are simulated to investigate the effect of the better instrument at two different altitudes. The first pair of simulated missions is flown at GRACE altitude (approx. 480 km) assuming on-board accelerometers with the same noise characteristics as those currently used for GRACE. The second pair of missions is flown at an altitude of approx. 250 km which requires a drag-free system to prevent satellite re-entry. In addition to allowing a lower satellite altitude, the drag-free system also reduces the errors associated with the accelerometer. All simulated mission scenarios assume a two satellite co-orbiting pair similar to GRACE in a near-polar, near-circular orbit. A method for local time variable gravity recovery through mass concentration blocks (mascons) is used to form simulated gravity estimates for Greenland and the Amazon region for three GFO configurations and GRACE. Simulation results show that the increased precision of the laser does not improve gravity estimation when flown with on-board accelerometers at the same altitude and spacecraft separation as GRACE, even when time-varying background models are not included. This study also shows that only modest improvement is realized for the best-case scenario (laser, low-altitude, drag-free) as compared to GRACE due to temporal aliasing errors. These errors are caused by high-frequency variations in the hydrology signal and imperfections in the atmospheric, oceanographic, and tidal models which are used to remove unwanted signal. This work concludes that applying the updated technologies alone will not immediately advance the accuracy of the gravity estimates. If the scientific objectives of a GFO mission require more accurate gravity estimates, then future work should focus on improvements in the geophysical models, and ways in which the mission design or data processing could reduce the effects of temporal aliasing
On the Measurement of the Lense-Thirring effect Using the Nodes of the LAGEOS Satellites in reply to "On the reliability of the so-far performed tests for measuring the Lense-Thirring effect with the LAGEOS satellites" by L. Iorio
In this paper, we provide a detailed description of our recent analysis and
determination of the frame-dragging effect obtained using the nodes of the
satellites LAGEOS and LAGEOS 2, in reply to the paper "On the reliability of
the so-far performed tests for measuring the Lense-Thirring effect with the
LAGEOS satellites" by L. IorioComment: Added: the precise references to the the ArXiv papers of L. Iorio:
gr-qc/0411024 v9 19 Apr 2005 and gr-qc/0411084 v5 19 Apr 2005, explicitly
containing his proposal to use the mean anomal
Estimation and Validation of Oceanic Mass Circulation from the GRACE Mission
Since the launch of the Gravity Recovery And Climate Experiment (GRACE) in March 2002, the Earth's surface mass variations have been monitored with unprecedented accuracy and resolution. Compared to the classical spherical harmonic solutions, global high-resolution mascon solutions allows the retrieval of mass variations with higher spatial and temporal sampling (2 degrees and 10 days). We present here the validation of the GRACE global mascon solutions by comparing mass estimates to a set of about 100 ocean bottom pressure (OSP) records, and show that the forward modelling of continental hydrology prior to the inversion of the K-band range rate data allows better estimates of ocean mass variations. We also validate our GRACE results to OSP variations modelled by different state-of-the-art ocean general circulation models, including ECCO (Estimating the Circulation and Climate of the Ocean) and operational and reanalysis from the MERCATOR project
ICESat Observations of Topographic Change in the Northern Segment of the 2004 Sumatra-Andaman Islands Earthquake Rupture Zone
The Andaman Islands are located 120 km east of the Sunda trench in the northern quarter of the 1300 km long rupture zone of the 2004 Sumatra-Andaman Islands earthquake inferred from the distribution of aftershocks. Initial field reports indicate that several meters of uplift and up to a meter of submergence occurred on the western and eastern shorelines of the Andaman Islands, respectively, associated with the earthquake (Bilham, 2005). Satellite images also document uplift of western shoreline coral reef platforms above sea level. Body-wave (Ji, 2005; Yamamaka, 2005) and tide-gauge (Ortiz, 2005) slip inversions only resolve coseismic slip in the southern one-third to one-half of the rupture zone. The amount of coseismic slip in the Andaman Islands region is poorly constrained by these inversions. The Ice, Cloud, and land Elevation Satellite (ICESat), a part of the NASA Earth Observing System, is being used to document the spatial pattern of Andaman Islands vertical displacements in order to constrain models of slip distribution in the northern part of the rupture zone. ICESat carries the Geoscience Laser Altimeter System (GLAS) that obtains elevation measurements from 80 m diameter footprints spaced 175 m apart along profiles. For surfaces of low slope, single-footprint absolute elevation and horizontal accuracies of 10 cm and 6 m (1 sigma), respectively, referenced to the ITRF 2002 TOPEX/Poseidon ellipsoid are being obtained. Laser pulse backscatter waveforms enable separation of ground topography and overlying vegetation cover. During each 33-day observing period ICESat acquires three profiles crossing the Andaman Islands. A NNE-SSW oriented track consists of 1600 laser footprints along the western side of North, Middle, and South Andaman Islands and 240 laser footprints across the center of Great Andaman Island. Two NNW-SSE tracks consist of 440 footprints across Middle Andaman Island and 25 footprints across the west side of Sentinel Island. Cloud-free profiles were acquired in the fall of 2003 and 2004. During February-March, 2005 ICESat's precise pointing capability will be used to exactly repeat these three profiles, with a cross-track accuracy of better than 100 m, providing trench- parallel and -perpendicular observations of topographic change of the Andaman Islands that will compliment geodetic field surveys. The observed elevation changes will be compared to models of coseismic deformation associated with the mainshock and large aftershocks in the Andaman Islands region
On the use of Ajisai and Jason-1 satellites for tests of General Relativity
Here we analyze in detail some aspects of the proposed use of Ajisai and
Jason-1, together with the LAGEOS satellites, to measure the general
relativistic Lense-Thirring effect in the gravitational field of the Earth. A
linear combination of the nodes of such satellites is the proposed observable.
The systematic error due to the mismodelling in the uncancelled even zonal
harmonics would be \sim 1% according to the latest present-day
CHAMP/GRACE-based Earth gravity models. In regard to the non-gravitational
perturbations especially affecting Jason-1, only relatively high-frequency
harmonic perturbations should occur: neither semisecular nor secular bias of
non-gravitational origin should affect the proposed combination: their maximum
impact is evaluated to \sim 4% over 2 years. Our estimation of the
root-sum-square total error is about 4-5% over at least 3 years of data
analysis required to average out the uncancelled tidal perturbations.Comment: Latex, 24 pages, 5 tables, 1 figure. Two references added, minor
modifications. To appear in New Astronom
Simulations of Recovery of Time-Varying Gravity from DECIGO Pathfinder
We simulated time-varying Earth's gravity field recovered from DPF to evaluate an impact of DPF and future satellite gradiometry mission on earth science. From hydrological water movement data and orbit information, gravity gradients to be measured at altitude about ~500km were generated. Errors caused by atmospheric and oceanic variations and instrumental noise were added. Monthly gravity fields were estimated solving normal equations between spherical harmonic coefficients and simulated gravity gradient data. Simulation results show that DPF likely provides monthly hydrological water storage change with spatial scale between 400 and 1000km. Sensitivities to large scale estimates depends on long-term stability of gravity gradient measurement, and errors in short scale estimates are caused by instrumental noise and imperfections in atmospheric and ocean model. With acceleration noise level is lower than ~5 x 10(exp -14) [m/s2/sqrtHz] at frequency higher than 3mHz, water storage changes at limited small basins will be provided by DPF. To monitor continental scale hydrological water movement, noise level must be lower than ~5 x 10(exp -14) [m/s2/sqrtHz] at frequency higher than 1mHz
Improved Earth Oblateness Rate Reveals Increased Ice Sheet Losses and Mass-Driven Sea Level Rise
Satellite laser ranging (SLR) observations are routinely applied toward the estimation of dynamic oblateness, C(sub 20), which is the largest globally integrated component of Earth's time-variable gravity field. Since 2002, GRACE and GRACE Follow-On have revolutionized the recovery of higher spatial resolution features of global time-variable gravity, with SLR continuing to provide the most reliable estimates of C (sub 20).We quantify the effect of various SLR processing strategies on estimating C(sub 20) and demonstrate better signal recovery with the inclusion of GRACE-derived low-degree gravity information in the forward model. This improved SLR product modifies the Antarctic and Greenland Ice Sheet mass trends by -15.4 and -3.5 Gt/year, respectively, as compared to CSR TN11, and improves global mean sea level budget closure by modifying sea level rise by +0.08 mm/year. We recommend that this new C(sub 20) product be applied to RL06 GRACE data products for enhanced accuracy and scientific interpretation
- …
