1,130 research outputs found
Temporal trends in vent fluid iron and sulfide chemistry following the 2005/2006 eruption at East Pacific Rise, 9°50′N
The chemistry of vent fluids that emanate to the seafloor undergoes dramatic changes after volcanic eruptions. Data on these changes are still limited, but the best studied example is the East Pacific Rise (EPR) at 9°50′N, where the temporal evolution of the vent fluid chemistry after the 1991/1992 eruption was documented. The area underwent another eruption sequence during late 2005/early 2006, and here we show that a similar evolution is recurring in the iron and sulfide contents of the high-temperature fluids sampled in June 2006, January 2007, and June 2008. The vents have had increasing dissolved iron and decreasing acid-volatile sulfide (free sulfide plus FeS) concentrations with 1 order of magnitude variation. In addition, chromium reducible sulfide (mainly pyrite) also had fivefold decreasing concentrations over the 3 years. Our results confirm a pattern that was noted only once before for 9°50′N EPR and emphasize the dramatic yearly variability in the concentrations of iron-sulfur species emanating from vents
Flow equation approach to the sine-Gordon model
A continuous sequence of infinitesimal unitary transformations is used to
diagonalize the quantum sine-Gordon model for \beta^2\in(2\pi,\infty). This
approach can be understood as an extension of perturbative scaling theory since
it links weak- to strong-coupling behavior in a systematic expansion: a small
expansion parameter is identified and this parameter remains small throughout
the entire flow unlike the diverging running coupling constant of perturbative
scaling. Our approximation consists in neglecting higher orders in this small
parameter. We find very accurate results for the single-particle/hole spectrum
in the strong-coupling phase and can describe the full crossover from weak to
strong-coupling. The integrable structure of the sine-Gordon model is not used
in our approach. Our new method should be of interest for the investigation of
nonintegrable perturbations and for other strong-coupling problems.Comment: 38 pages, 7 figure
Quantum Cryptography
Quantum cryptography is a new method for secret communications offering the
ultimate security assurance of the inviolability of a Law of Nature. In this
paper we shall describe the theory of quantum cryptography, its potential
relevance and the development of a prototype system at Los Alamos, which
utilises the phenomenon of single-photon interference to perform quantum
cryptography over an optical fiber communications link.Comment: 36 pages in compressed PostScript format, 10 PostScript figures
compressed tar fil
Path-Integral bosonization of a non-local interaction and its application to the study of 1-d many-body systems
We extend the path-integral approach to bosonization to the case in which the
fermionic interaction is non-local. In particular we obtain a completely
bosonized version of a Thirring-like model with currents coupled by general
(symmetric) bilocal potentials. The model contains the Tomonaga-Luttinger model
as a special case; exploiting this fact we study the basic properties of the
1-d spinless fermionic gas: fermionic correlators, the spectrum of collective
modes, etc. Finally we discuss the generalization of our procedure to the
non-Abelian case, thus providing a new tool to be used in the study of 1-d
many-body systems with spin-flipping interactions.Comment: 26 pages LATEX, La Plata 94-0
Quasiclassical theory of electronic transport in mesoscopic systems: Luttinger liquids revisited
The method of the quasiclassical Green's function is used to determine the
equilibrium properties of one-dimensional (1D) interacting Fermi systems, in
particular, the bulk and the local (near a hard wall) density of states. While
this is a novel approach to 1D systems, our findings do agree with standard
results for Luttinger liquids obtained with the bosonization method. Analogies
to the so-called theory of tunneling through ultrasmall junctions are
pointed out and are exploited. Further applications of the Green's function
method for 1D systems are discussed.Comment: 7 pages, Proceedings of ECNM06, Ustron, Poland (references added
Lattice vibrations of alpha'-NaV_2O_5 in the low-temperature phase. Magnetic bound states?
We report high resolution polarized infrared studies of the quarter-filled
spin ladder compound alpha'-NaV_2O_5 as a function of temperature (5K <= T <=
300K). Numerous new modes were detected below the temperature T_c=34K of the
phase transition into a charge ordered nonmagnetic state accompanied by a
lattice dimerization. We analyse the Brillouin zone (BZ) folding due to lattice
dimerization at T_c and show that some peculiarities of the low-temperature
vibrational spectrum come from quadruplets folded from the BZ point (1/2, 1/2,
1/4). We discuss an earlier interpretation of the 70, 107, and 133cm-1 modes as
magnetic bound states and propose the alternative interpretation as folded
phonon modes strongly interacting with charge and spin excitations.Comment: 15 pages, 13 Postscript figure
High frequency ESR investigation on dynamical charge disproportionation and spin gap excitation in NaV_2O_5
A significant frequency dependence of the ESR line width is found in NaV_2O_5
between 34-100 K and the line width increases as the resonance frequency is
increased from 95 GHz to 760 GHz. The observed frequency dependence is
qualitatively explained in terms of the dynamical charge disproportionation.
The present results show the essential role of the internal charge degree of
freedom in a V-O-V bond. We have also proposed the existence of the
Dzyaloshinsky-Moriya interaction in the low temperature charge ordered phase
considering the breaking of the selection rule of ESR realized as the direct
observation of the spin gap excitation.Comment: 9 figures submitted to J. Phys.Soc. Jp
Conductance oscillations in strongly correlated fractional quantum Hall line junctions
We present a detailed theory of transport through line junctions formed by
counterpropagating single-branch fractional-quantum-Hall edge channels having
different filling factors. Intriguing transport properties are exhibited when
strong Coulomb interactions between electrons from the two edges are present.
Such strongly correlated line junctions can be classified according to the
value of an effective line-junction filling factor n that is the inverse of an
even integer. Interactions turn out to affect transport most importantly for
n=1/2 and n=1/4. A particularly interesting case is n=1/4 corresponding to,
e.g., a junction of edge channels having filling factor 1 and 1/5,
respectively. We predict its differential tunneling conductance to oscillate as
a function of voltage. This behavior directly reflects the existence of novel
Majorana-fermion quasiparticle excitations in this type of line junction.
Experimental accessibility of such systems in current cleaved-edge overgrown
samples enables direct testing of our theoretical predictions.Comment: 2 figures, 10 pages, RevTex4, v2: added second figure for clarit
Sliding Luttinger liquid phases
We study systems of coupled spin-gapped and gapless Luttinger liquids. First,
we establish the existence of a sliding Luttinger liquid phase for a system of
weakly coupled parallel quantum wires, with and without disorder. It is shown
that the coupling can {\it stabilize} a Luttinger liquid phase in the presence
of disorder. We then extend our analysis to a system of crossed Luttinger
liquids and establish the stability of a non-Fermi liquid state: the crossed
sliding Luttinger liquid phase (CSLL). In this phase the system exhibits a
finite-temperature, long-wavelength, isotropic electric conductivity that
diverges as a power law in temperature as . This two-dimensional
system has many properties of a true isotropic Luttinger liquid, though at zero
temperature it becomes anisotropic. An extension of this model to a
three-dimensional stack exhibits a much higher in-plane conductivity than the
conductivity in a perpendicular direction.Comment: Revtex, 18 pages, 8 figure
Exact solution of a 2D interacting fermion model
We study an exactly solvable quantum field theory (QFT) model describing
interacting fermions in 2+1 dimensions. This model is motivated by physical
arguments suggesting that it provides an effective description of spinless
fermions on a square lattice with local hopping and density-density
interactions if, close to half filling, the system develops a partial energy
gap. The necessary regularization of the QFT model is based on this proposed
relation to lattice fermions. We use bosonization methods to diagonalize the
Hamiltonian and to compute all correlation functions. We also discuss how,
after appropriate multiplicative renormalizations, all short- and long distance
cutoffs can be removed. In particular, we prove that the renormalized two-point
functions have algebraic decay with non-trivial exponents depending on the
interaction strengths, which is a hallmark of Luttinger-liquid behavior.Comment: 59 pages, 3 figures, v2: further references added; additional
subsections elaborating mathematical details; additional appendix with
details on the relation to lattice fermion
- …
