1,130 research outputs found

    Temporal trends in vent fluid iron and sulfide chemistry following the 2005/2006 eruption at East Pacific Rise, 9°50′N

    Get PDF
    The chemistry of vent fluids that emanate to the seafloor undergoes dramatic changes after volcanic eruptions. Data on these changes are still limited, but the best studied example is the East Pacific Rise (EPR) at 9°50′N, where the temporal evolution of the vent fluid chemistry after the 1991/1992 eruption was documented. The area underwent another eruption sequence during late 2005/early 2006, and here we show that a similar evolution is recurring in the iron and sulfide contents of the high-temperature fluids sampled in June 2006, January 2007, and June 2008. The vents have had increasing dissolved iron and decreasing acid-volatile sulfide (free sulfide plus FeS) concentrations with 1 order of magnitude variation. In addition, chromium reducible sulfide (mainly pyrite) also had fivefold decreasing concentrations over the 3 years. Our results confirm a pattern that was noted only once before for 9°50′N EPR and emphasize the dramatic yearly variability in the concentrations of iron-sulfur species emanating from vents

    Flow equation approach to the sine-Gordon model

    Full text link
    A continuous sequence of infinitesimal unitary transformations is used to diagonalize the quantum sine-Gordon model for \beta^2\in(2\pi,\infty). This approach can be understood as an extension of perturbative scaling theory since it links weak- to strong-coupling behavior in a systematic expansion: a small expansion parameter is identified and this parameter remains small throughout the entire flow unlike the diverging running coupling constant of perturbative scaling. Our approximation consists in neglecting higher orders in this small parameter. We find very accurate results for the single-particle/hole spectrum in the strong-coupling phase and can describe the full crossover from weak to strong-coupling. The integrable structure of the sine-Gordon model is not used in our approach. Our new method should be of interest for the investigation of nonintegrable perturbations and for other strong-coupling problems.Comment: 38 pages, 7 figure

    Quantum Cryptography

    Full text link
    Quantum cryptography is a new method for secret communications offering the ultimate security assurance of the inviolability of a Law of Nature. In this paper we shall describe the theory of quantum cryptography, its potential relevance and the development of a prototype system at Los Alamos, which utilises the phenomenon of single-photon interference to perform quantum cryptography over an optical fiber communications link.Comment: 36 pages in compressed PostScript format, 10 PostScript figures compressed tar fil

    Path-Integral bosonization of a non-local interaction and its application to the study of 1-d many-body systems

    Get PDF
    We extend the path-integral approach to bosonization to the case in which the fermionic interaction is non-local. In particular we obtain a completely bosonized version of a Thirring-like model with currents coupled by general (symmetric) bilocal potentials. The model contains the Tomonaga-Luttinger model as a special case; exploiting this fact we study the basic properties of the 1-d spinless fermionic gas: fermionic correlators, the spectrum of collective modes, etc. Finally we discuss the generalization of our procedure to the non-Abelian case, thus providing a new tool to be used in the study of 1-d many-body systems with spin-flipping interactions.Comment: 26 pages LATEX, La Plata 94-0

    Quasiclassical theory of electronic transport in mesoscopic systems: Luttinger liquids revisited

    Get PDF
    The method of the quasiclassical Green's function is used to determine the equilibrium properties of one-dimensional (1D) interacting Fermi systems, in particular, the bulk and the local (near a hard wall) density of states. While this is a novel approach to 1D systems, our findings do agree with standard results for Luttinger liquids obtained with the bosonization method. Analogies to the so-called P(E)P(E) theory of tunneling through ultrasmall junctions are pointed out and are exploited. Further applications of the Green's function method for 1D systems are discussed.Comment: 7 pages, Proceedings of ECNM06, Ustron, Poland (references added

    Lattice vibrations of alpha'-NaV_2O_5 in the low-temperature phase. Magnetic bound states?

    Full text link
    We report high resolution polarized infrared studies of the quarter-filled spin ladder compound alpha'-NaV_2O_5 as a function of temperature (5K <= T <= 300K). Numerous new modes were detected below the temperature T_c=34K of the phase transition into a charge ordered nonmagnetic state accompanied by a lattice dimerization. We analyse the Brillouin zone (BZ) folding due to lattice dimerization at T_c and show that some peculiarities of the low-temperature vibrational spectrum come from quadruplets folded from the BZ point (1/2, 1/2, 1/4). We discuss an earlier interpretation of the 70, 107, and 133cm-1 modes as magnetic bound states and propose the alternative interpretation as folded phonon modes strongly interacting with charge and spin excitations.Comment: 15 pages, 13 Postscript figure

    High frequency ESR investigation on dynamical charge disproportionation and spin gap excitation in NaV_2O_5

    Full text link
    A significant frequency dependence of the ESR line width is found in NaV_2O_5 between 34-100 K and the line width increases as the resonance frequency is increased from 95 GHz to 760 GHz. The observed frequency dependence is qualitatively explained in terms of the dynamical charge disproportionation. The present results show the essential role of the internal charge degree of freedom in a V-O-V bond. We have also proposed the existence of the Dzyaloshinsky-Moriya interaction in the low temperature charge ordered phase considering the breaking of the selection rule of ESR realized as the direct observation of the spin gap excitation.Comment: 9 figures submitted to J. Phys.Soc. Jp

    Conductance oscillations in strongly correlated fractional quantum Hall line junctions

    Get PDF
    We present a detailed theory of transport through line junctions formed by counterpropagating single-branch fractional-quantum-Hall edge channels having different filling factors. Intriguing transport properties are exhibited when strong Coulomb interactions between electrons from the two edges are present. Such strongly correlated line junctions can be classified according to the value of an effective line-junction filling factor n that is the inverse of an even integer. Interactions turn out to affect transport most importantly for n=1/2 and n=1/4. A particularly interesting case is n=1/4 corresponding to, e.g., a junction of edge channels having filling factor 1 and 1/5, respectively. We predict its differential tunneling conductance to oscillate as a function of voltage. This behavior directly reflects the existence of novel Majorana-fermion quasiparticle excitations in this type of line junction. Experimental accessibility of such systems in current cleaved-edge overgrown samples enables direct testing of our theoretical predictions.Comment: 2 figures, 10 pages, RevTex4, v2: added second figure for clarit

    Sliding Luttinger liquid phases

    Full text link
    We study systems of coupled spin-gapped and gapless Luttinger liquids. First, we establish the existence of a sliding Luttinger liquid phase for a system of weakly coupled parallel quantum wires, with and without disorder. It is shown that the coupling can {\it stabilize} a Luttinger liquid phase in the presence of disorder. We then extend our analysis to a system of crossed Luttinger liquids and establish the stability of a non-Fermi liquid state: the crossed sliding Luttinger liquid phase (CSLL). In this phase the system exhibits a finite-temperature, long-wavelength, isotropic electric conductivity that diverges as a power law in temperature TT as T0T \to 0. This two-dimensional system has many properties of a true isotropic Luttinger liquid, though at zero temperature it becomes anisotropic. An extension of this model to a three-dimensional stack exhibits a much higher in-plane conductivity than the conductivity in a perpendicular direction.Comment: Revtex, 18 pages, 8 figure

    Exact solution of a 2D interacting fermion model

    Full text link
    We study an exactly solvable quantum field theory (QFT) model describing interacting fermions in 2+1 dimensions. This model is motivated by physical arguments suggesting that it provides an effective description of spinless fermions on a square lattice with local hopping and density-density interactions if, close to half filling, the system develops a partial energy gap. The necessary regularization of the QFT model is based on this proposed relation to lattice fermions. We use bosonization methods to diagonalize the Hamiltonian and to compute all correlation functions. We also discuss how, after appropriate multiplicative renormalizations, all short- and long distance cutoffs can be removed. In particular, we prove that the renormalized two-point functions have algebraic decay with non-trivial exponents depending on the interaction strengths, which is a hallmark of Luttinger-liquid behavior.Comment: 59 pages, 3 figures, v2: further references added; additional subsections elaborating mathematical details; additional appendix with details on the relation to lattice fermion
    corecore