254 research outputs found
Microstructure and mechanical properties of as-built and heat-treated electron beam melted Ti–6Al–4V
Structural Integrity of an Electron Beam Melted Titanium Alloy
Advanced manufacturing encompasses the wide range of processes that consist of “3D printing” of metallic materials. One such method is Electron Beam Melting (EBM), a modern build technology that offers significant potential for lean manufacture and a capability to produce fully dense near-net shaped components. However, the manufacture of intricate geometries will result in variable thermal cycles and thus a transient microstructure throughout, leading to a highly textured structure. As such, successful implementation of these technologies requires a comprehensive assessment of the relationships of the key process variables, geometries, resultant microstructures and mechanical properties. The nature of this process suggests that it is often difficult to produce representative test specimens necessary to achieve a full mechanical property characterisation. Therefore, the use of small scale test techniques may be exploited, specifically the small punch (SP) test. The SP test offers a capability for sampling miniaturised test specimens from various discrete locations in a thin-walled component, allowing a full characterisation across a complex geometry. This paper provides support in working towards development and validation strategies in order for advanced manufactured components to be safely implemented into future gas turbine applications. This has been achieved by applying the SP test to a series of Ti-6Al-4V variants that have been manufactured through a variety of processing routes including EBM and investigating the structural integrity of each material and how this controls the mechanical response
A critical evaluation of the microstructural gradient along the build direction in electron beam melted Ti-6Al-4V alloy
It is generally recognised that electron beam melted (EBM) Ti-6Al-4V alloys exhibit a microstructural gradient along the build direction, but there have been some inconsistent experimental observations and debate as to the origin and magnitude of this effect. Here we present an unambiguous evaluation of this microstructural gradient and associated mechanical property along the EBM build direction on purpose-built round bar RB samples with build height of 380 mm and rectangular plate RP samples with build height of 120 mm. Columnar prior β grain width was found to increase (from 86 ± 38 to 154 ± 56 µm in RB and from 79 ± 34 to 122 ± 56 µm in RP samples) with the build height and the similar increase was also observed for α lath width (from 0.58 ± 24 to 0.87 ± 33 µm in RB and from 1.50 ± 45 to 1.80 ± 49 µm in RP samples). These observations can be attributed to the thermal gradient in the powder bed that produced a cooling rate gradient along the build height. The measured α lath width variation along the build height followed a log-normal distribution. The graded microstructure resulted in a decrease in micro-hardness which correlated very well with the mean α lath width by following a Hall-Petch relation
Residual stress and texture control in Ti-6Al-4V wire + arc additively manufactured intersections by stress relief and rolling
Additively manufactured intersections have the theoretical risk to contain hydrostatic tensile residual stresses, which eventually cannot be thermally stress relieved. The stresses in Ti-6Al-4V wire + arc additively manufactured (WAAM) intersections are lower compared to single pass walls and stresses in continuous walls are larger compared to discontinuous walls with otherwise identical geometry. Thermal stress relief was found to virtually eliminate them.
Inter-pass rolling can yield the desired grain refinement, without having any noteworthy influence on the development of residual stresses. The strain measurement itself by neutron diffraction is facilitated by the refined microstructure, because the otherwise textured microstructure produces anisotropic peak intensity, not allowing Pawley refinement. Without rolling, the
{101¯1} and {101¯3}
family of hcp planes are the only ones that diffract consistently in the three principal directions
Microstructural Characterization of a Prototype Titanium Alloy Structure Processed via Direct Laser Deposition (DLD)
On a Testing Methodology for the Mechanical Property Assessment of a New Low-Cost Titanium Alloy Derived from Synthetic Rutile
Mechanical property data of a low-cost titanium alloy derived directly from synthetic rutile is reported. A small-scale testing approach comprising consolidation via field-assisted sintering technology, followed by axisymmetric compression testing, has been designed to yield mechanical property data from small quantities of titanium alloy powder. To validate this approach and provide a benchmark, Ti-6Al-4V powder has been processed using the same methodology and compared with material property data generated from thermo-physical simulation software. Compressive yield strength and strain to failure of the synthetic rutile-derived titanium alloy were revealed to be similar to that of Ti-6Al-4V
Fatigue crack propagation behaviour in wire+arc additive manufactured Ti‐6Al‐4V: Effects of microstructure and residual stress
Fatigue crack propagation tests of Ti‐6Al‐4V fabricated by the Wire+Arc Additive Manufacturing (WAAM) process are analysed. Crack growth rate and trajectory are examined before and after the crack tip crossing an interface between the WAAM and wrought alloys. The study has focused on the microstructure and residual stress effect. First, the differences in crack growth rate and path between WAAM and wrought alloys are attributed to their different microstructure; the equiaxed wrought alloy has straight crack path, whereas the WAAM lamellar structure causes tortuous crack path resulting in lower crack growth rate. Second, based on measured residual stress profile in the as-built WAAM piece, retained residual stress in the much smaller compact tension specimens and its effect on crack growth rate are calculated by the finite element method. Numerical simulation shows considerable residual stress in the test specimen and the stress magnitude depends on the initial crack location and propagation direction in relation to the WAAM-wrought interface. Residual stress is released immediately if the initial crack is in the wrought substrate; hence it has little effect. In contrast, when crack grows from WAAM to wrought, residual stress is retained resulting in higher stress intensity factor; hence greater crack growth rate.<br/
The role of microstructure and local crystallographic orientation near porosity defects on the high cycle fatigue life of an additive manufactured Ti-6Al-4V
Titanium alloys such as Ti-6Al-4V built by most of the additive manufacturing processes are known to contain process induced defects, non-conventional microstructure and strong crystallographic texture; all of which can affect the fatigue strength. In this study we evaluated the effect of crystallographic orientation of α and α lath width around gas pore defects on the high cycle fatigue life of Wire + Arc Additive Manufactured Ti-6Al-4V by means of Electron Back Scattered Diffraction. Here we show that variations in crystallographic orientation of α lath and its width in the vicinity of the crack initiating defect were the main reasons for the considerable scatter in fatigue life. Pyramidal slip systems with high Schmid factor active around the defects resulted in longer fatigue life compared to pyramidal slip with lower Schmid factor. In the absence of pyramidal slip, cracks initiated from active prismatic slip systems. When considering the influence of the microstructure, a higher number of smaller α laths around the defect resulted in longer fatigue life, and vice versa. Overall, the fatigue crack initiation stage was controlled collectively by the complex interaction of porosity characteristics, α lath width and its crystallographic orientation at the crack initiation locatio
Modeling of Ti-W Solidification Microstructures Under Additive Manufacturing Conditions
Additive manufacturing (AM) processes have many benefits for the fabrication of alloy parts, including the potential for greater microstructural control and targeted properties than traditional metallurgy processes. To accelerate utilization of this process to produce such parts, an effective computational modeling approach to identify the relationships between material and process parameters, microstructure, and part properties is essential. Development of such a model requires accounting for the many factors in play during this process, including laser absorption, material addition and melting, fluid flow, various modes of heat transport, and solidification. In this paper, we start with a more modest goal, to create a multiscale model for a specific AM process, Laser Engineered Net Shaping (LENS™), which couples a continuum-level description of a simplified beam melting problem (coupling heat absorption, heat transport, and fluid flow) with a Lattice Boltzmann-cellular automata (LB-CA) microscale model of combined fluid flow, solute transport, and solidification. We apply this model to a binary Ti-5.5 wt pct W alloy and compare calculated quantities, such as dendrite arm spacing, with experimental results reported in a companion paper
- …
