476 research outputs found
Les agressions en milieu psychiatrique. Vécu et perceptions des intervenants du Pavillon Roland-Saucier du Complexe hospitalier de la Sagamie
Cet article présente les résultats d'une étude effectuée au Pavillon Roland-Saucier, aile psychiatrique du Complexe hospitalier de la Sagamie. Le but poursuivi était d'explorer, par une approche phénoménologique, la problématique des agressions dont les intervenants étaient victimes de la part de bénéficiaires, et particulièrement l'impact de ces agressions sur leur vie professionnelle. Trente intervenants de différentes catégories professionnelles, sélectionnés par une procédure aléatoire stratifiée, ont accepté d'accorder des entrevues. L'analyse de ces entrevues a permis de dégager des éléments importants sur la base desquels diverses recommandations ont été formulées en vue d'améliorer la situation.This article presents results of a study conducted at the Pavillon Roland-Saucier, the psychiatric ward of the Complexe hospitalier de la Sagamie. The objective was to explore with a phenomenological approach the issue of assaults by patients of mental health workers and in particular the impact of theses assaults on their professional life. Thirty workers of various professional categories, selected by a stratified random procedure, have accepted to be interviewed. The analysis of theses interviews has allowed to draw important elements on the basis which various recommendations have been suggested in order to improve the situation.Este articulo presenta los resultados de un estudio efectuado en el ala psiquiátrica del Pabellón Roland-Saucier del complejo hospitalario de la Sagamie. El objetivo era el de explorar por medio de un enfoque fenomenologico, el problema de las agresiones de las que los trabajadores eran víctimas de parte de los beneficiarios, y particularmente del impacto de esas agresiones en sus vidas profesionales. Treinta trabajadores de diferentes categorías profesionales, seleccionados por un procedimiento aleatorio estratificado, aceptaron acordar entrevistas. El análisis de estas entrevistas permitió despejar los elementos importantes y diversas recomendaciones fueron emitidas sobre esta base, con el fin de mejorar la situación
Eflornithine is a cost-effective alternative to melarsoprol for the treatment of second-stage human West African trypanosomiasis in Caxito, Angola.
OBJECTIVE: To compare the cost-effectiveness of eflornithine and melarsoprol in the treatment of human African trypanosomiasis. METHOD: We used data from a Médecins Sans Frontières treatment project in Caxito, Angola to do a formal cost-effectiveness analysis, comparing the efficiency of an eflornithine-based approach with melarsoprol. Endpoints calculated were: cost per death avoided; incremental cost per additional life saved; cost per years of life lost (YLL) averted; incremental cost per YLL averted. Sensitivity analysis was done for all parameters for which uncertainty existed over the plausible range. We did an analysis with and without cost of trypanocidal drugs included. RESULTS: Effectiveness was 95.6% for melarsoprol and 98.7% for eflornithine. Cost/patient was 504.6 for melarsoprol and 552.3 for eflornithine, cost per life saved was 527.5 USD for melarsoprol and 559.8 USD for eflornithine without cost of trypanocidal drugs but it increases to 600.4 USD and 844.6 USD per patient saved and 627.6 USD and 856.1 USD per life saved when cost of trypanocidal drugs are included. Incremental cost-effectiveness ratio is 1596 USD per additional life saved and 58 USD per additional life year saved in the baseline scenario without cost of trypanocidal drugs but it increases to 8169 USD per additional life saved and 299 USD per additional life year saved if costs of trypanocidal drugs are included. CONCLUSION: Eflornithine saves more lives than melarsoprol, but melarsoprol is slightly more cost-effective. Switching from melarsoprol to eflornithine can be considered as a cost-effective option according to the WHO choice criteria
Human African trypanosomiasis
Human African trypanosomiasis (sleeping sickness) occurs in sub-Saharan Africa. It is caused by the protozoan parasite Trypanosoma brucei, transmitted by tsetse flies. Almost all cases are due to Trypanosoma brucei gambiense, which is indigenous to west and central Africa. Prevalence is strongly dependent on control measures, which are often neglected during periods of political instability, thus leading to resurgence. With fewer than 12 000 cases of this disabling and fatal disease reported per year, trypanosomiasis belongs to the most neglected tropical diseases. The clinical presentation is complex, and diagnosis and treatment difficult. The available drugs are old, complicated to administer, and can cause severe adverse reactions. New diagnostic methods and safe and effective drugs are urgently needed. Vector control, to reduce the number of flies in existing foci, needs to be organised on a pan-African basis. WHO has stated that if national control programmes, international organisations, research institutes, and philanthropic partners engage in concerted action, elimination of this disease might even be possible
Diagnostic accuracy of Loopamp Trypanosoma brucei detection kit for diagnosis of human African trypanosomiasis in clinical samples
Background: Molecular methods have great potential for sensitive parasite detection in the diagnosis of human African trypanosomiasis (HAT), but the requirements in terms of laboratory infrastructure limit their use to reference centres. A recently developed assay detects the Trypanozoon repetitive insertion mobile element (RIME) DNA under isothermal amplification conditions and has been transformed into a ready-to-use kit format, the Loopamp Trypanosoma brucei. In this study, we have evaluated the diagnostic performance of the Loopamp Trypanosoma brucei assay (hereafter called LAMP) in confirmed T.b. gambiense HAT patients, HAT suspects and healthy endemic controls from the Democratic Republic of the Congo (DRC). Methodology/Principal findings: 142 T.b. gambiense HAT patients, 111 healthy endemic controls and 97 HAT suspects with unconfirmed status were included in this retrospective evaluation. Reference standard tests were parasite detection in blood, lymph or cerebrospinal fluid. Archived DNA from blood of all study participants was analysed in duplicate with LAMP. Sensitivity of LAMP in parasitologically confirmed cases was 87.3% (95% CI 80.9–91.8%) in the first run and 93.0% (95% CI 87.5–96.1%) in the second run. Specificity in healthy controls was 92.8% (95% CI 86.4–96.3%) in the first run and 96.4% (95% CI 91.1–98.6%) in the second run. Reproducibility was excellent with a kappa value of 0.81. Conclusions/Significance: In this laboratory-based study, the Loopamp Trypanosoma brucei Detection Kit showed good diagnostic accuracy and excellent reproducibility. Further studies are needed to assess the feasibility of its routine use for diagnosis of HAT under field conditions
Accuracy of five algorithms to diagnose gambiense human African trypanosomiasis.
Algorithms to diagnose gambiense human African trypanosomiasis (HAT, sleeping sickness) are often complex due to the unsatisfactory sensitivity and/or specificity of available tests, and typically include a screening (serological), confirmation (parasitological) and staging component. There is insufficient evidence on the relative accuracy of these algorithms. This paper presents estimates of the accuracy of five algorithms used by past Médecins Sans Frontières programmes in the Republic of Congo, Southern Sudan and Uganda
Forecasting Human African Trypanosomiasis Prevalences from Population Screening Data Using Continuous Time Models
To eliminate and eradicate gambiense human African trypanosomiasis (HAT), maximizing the effectiveness of active case finding is of key importance. The progression of the epidemic is largely influenced by the planning of these operations. This paper introduces and analyzes five models for predicting HAT prevalence in a given village based on past observed prevalence levels and past screening activities in that village. Based on the quality of prevalence level predictions in 143 villages in Kwamouth (DRC), and based on the theoretical foundation underlying the models, we consider variants of the Logistic Model—a model inspired by the SIS epidemic model—to be most suitable for predicting HAT prevalence levels. Furthe
Incorporating scale dependence in disease burden estimates:the case of human African trypanosomiasis in Uganda
The WHO has established the disability-adjusted life year (DALY) as a metric for measuring the burden of human disease and injury globally. However, most DALY estimates have been calculated as national totals. We mapped spatial variation in the burden of human African trypanosomiasis (HAT) in Uganda for the years 2000-2009. This represents the first geographically delimited estimation of HAT disease burden at the sub-country scale.Disability-adjusted life-year (DALY) totals for HAT were estimated based on modelled age and mortality distributions, mapped using Geographic Information Systems (GIS) software, and summarised by parish and district. While the national total burden of HAT is low relative to other conditions, high-impact districts in Uganda had DALY rates comparable to the national burden rates for major infectious diseases. The calculated average national DALY rate for 2000-2009 was 486.3 DALYs/100 000 persons/year, whereas three districts afflicted by rhodesiense HAT in southeastern Uganda had burden rates above 5000 DALYs/100 000 persons/year, comparable to national GBD 2004 average burden rates for malaria and HIV/AIDS.These results provide updated and improved estimates of HAT burden across Uganda, taking into account sensitivity to under-reporting. Our results highlight the critical importance of spatial scale in disease burden analyses. National aggregations of disease burden have resulted in an implied bias against highly focal diseases for which geographically targeted interventions may be feasible and cost-effective. This has significant implications for the use of DALY estimates to prioritize disease interventions and inform cost-benefit analyses
Efficacy, safety, and dose of Pafuramidine, a new oral drug for treatment of first stage sleeping sickness, in a phase 2a clinical study and phase 2b randomized clinical studies
Sleeping sickness (human African trypanosomiasis [HAT]) is caused by protozoan parasites and characterized by a chronic progressive course, which may last up to several years before death. We conducted two Phase 2 studies to determine the efficacy and safety of oral pafuramidine in African patients with first stage HAT.; The Phase 2a study was an open-label, non-controlled, proof-of-concept study where 32 patients were treated with 100 mg of pafuramidine orally twice a day (BID) for 5 days at two trypanosomiasis reference centers (Angola and the Democratic Republic of the Congo [DRC]) between August 2001 and November 2004. The Phase 2b study compared pafuramidine in 41 patients versus standard pentamidine therapy in 40 patients. The Phase 2b study was open-label, parallel-group, controlled, randomized, and conducted at two sites in the DRC between April 2003 and February 2007. The Phase 2b study was then amended to add an open-label sequence (Phase 2b-2), where 30 patients received pafuramidine for 10 days. The primary efficacy endpoint was parasitologic cure at 24 hours (Phase 2a) or 3 months (Phase 2b) after treatment completion. The primary safety outcome was the rate of occurrence of World Health Organization Toxicity Scale Grade 3 or higher adverse events. All subjects provided written informed consent.; Pafuramidine for the treatment of first stage HAT was comparable in efficacy to pentamidine after 10 days of dosing. The cure rates 3 months post-treatment were 79% in the 5-day pafuramidine, 100% in the 7-day pentamidine, and 93% in the 10-day pafuramidine groups. In Phase 2b, the percentage of patients with at least 1 treatment-emergent adverse event was notably higher after pentamidine treatment (93%) than pafuramidine treatment for 5 days (25%) and 10 days (57%). These results support continuation of the development program for pafuramidine into Phase 3
Quantifying the burden of rhodesiense sleeping sickness in Urambo district, Tanzania
Sleeping sickness (human African trypanosomiasis - HAT) is a disease transmitted by tsetse flies and is always fatal if left untreated. The disease occurs in foci affecting poor communities with limited access to health service provision and as such the disease is often left undiagnosed, mistaken for more common afflictions. Even if diagnosed, sleeping sickness is costly to treat, both for health services and patients and their families in terms of costs of diagnosis, transport, hospital care, and the prolonged period of convalescence. Here we estimate the health burden of the acute form T. b. rhodesiense sleeping sickness in Urambo District, Tanzania in terms of Disability Adjusted Life Years (DALYs), the yardstick commonly used by policy makers to prioritize disease management practices, representing a year of healthy life lost to disease. In this single district, the burden of the disease over one year was estimated at 979 DALYs and the estimated monetary costs to health services for the 143 treated patients at US 3,673 for direct medical costs and US$ 9,781 for indirect non-medical costs. Sleeping sickness thus places a considerable burden on the affected rural communities and health services
- …
