214 research outputs found

    Modelling the electronic properties of GaAs polytype nanostructures: impact of strain on the conduction band character

    Full text link
    We study the electronic properties of GaAs nanowires composed of both the zincblende and wurtzite modifications using a ten-band k.p model. In the wurtzite phase, two energetically close conduction bands are of importance for the confinement and the energy levels of the electron ground state. These bands form two intersecting potential landscapes for electrons in zincblende/wurtzite nanostructures. The energy difference between the two bands depends sensitively on strain, such that even small strains can reverse the energy ordering of the two bands. This reversal may already be induced by the non-negligible lattice mismatch between the two crystal phases in polytype GaAs nanostructures, a fact that was ignored in previous studies of these structures. We present a systematic study of the influence of intrinsic and extrinsic strain on the electron ground state for both purely zincblende and wurtzite nanowires as well as for polytype superlattices. The coexistence of the two conduction bands and their opposite strain dependence results in complex electronic and optical properties of GaAs polytype nanostructures. In particular, both the energy and the polarization of the lowest intersubband transition depends on the relative fraction of the two crystal phases in the nanowire.Comment: 8 pages / 6 figure

    Axial GaAs/Ga(As,Bi) Nanowire Heterostructures

    Get PDF
    Bi-containing III-V semiconductors constitute an exciting class of metastable compounds with wide-ranging potential optoelectronic and electronic applications. However, the growth of III-V-Bi alloys requires group-III-rich growth conditions, which pose severe challenges for planar growth. In this work, we exploit the naturally-Ga-rich environment present inside the metallic droplet of a self-catalyzed GaAs nanowire to synthesize metastable GaAs/GaAs1x_{1-\text{x}}Bix_{\text{x}} axial nanowire heterostructures with high Bi contents. The axial GaAs1x_{1-\text{x}}Bix_{\text{x}} segments are realized with molecular beam epitaxy by first enriching only the vapor-liquid-solid (VLS) Ga droplets with Bi, followed by exposing the resulting Ga-Bi droplets to As2_2 at temperatures ranging from 270 to 380\,^{\circ}C to precipitate GaAs1x_{1-\text{x}}Bix_{\text{x}} only under the nanowire droplets. Microstructural and elemental characterization reveals the presence of single crystal zincblende GaAs1x_{1-\text{x}}Bix_{\text{x}} axial nanowire segments with Bi contents up to (10±\pm2)%\%. This work illustrates how the unique local growth environment present during the VLS nanowire growth can be exploited to synthesize heterostructures with metastable compounds

    Coupling of exciton states as the origin of their biexponential decay dynamics in GaN nanowires

    Full text link
    Using time-resolved photoluminescence spectroscopy, we explore the transient behavior of bound and free excitons in GaN nanowire ensembles. We investigate samples with distinct diameter distributions and show that the pronounced biexponential decay of the donor-bound exciton observed in each case is not caused by the nanowire surface. At long times, the individual exciton transitions decay with a common lifetime, which suggests a strong coupling between the corresponding exciton states. A system of non-linear rate-equations taking into account this coupling directly reproduces the experimentally observed biexponential decay.Comment: 5 pages, 4 figure
    corecore