166 research outputs found
zCap: a zero configuration adaptive paging and mobility management mechanism
Today, cellular networks rely on fixed collections of cells (tracking areas) for user equipment localisation. Locating users within these areas involves broadcast search (paging), which consumes radio bandwidth but reduces the user equipment signalling required for mobility management. Tracking areas are today manually configured, hard to adapt to local mobility and influence the load on several key resources in the network. We propose a decentralised and self-adaptive approach to mobility management based on a probabilistic model of local mobility. By estimating the parameters of this model from observations of user mobility collected online, we obtain a dynamic model from which we construct local neighbourhoods of cells where we are most likely to locate user equipment. We propose to replace the static tracking areas of current systems with neighbourhoods local to each cell. The model is also used to derive a multi-phase paging scheme, where the division of neighbourhood cells into consecutive phases balances response times and paging cost. The complete mechanism requires no manual tracking area configuration and performs localisation efficiently in terms of signalling and response times. Detailed simulations show that significant potential gains in localisation effi- ciency are possible while eliminating manual configuration of mobility management parameters. Variants of the proposal can be implemented within current (LTE) standards
NEMESYS: Enhanced Network Security for Seamless Service Provisioning in the Smart Mobile Ecosystem
As a consequence of the growing popularity of smart mobile devices, mobile
malware is clearly on the rise, with attackers targeting valuable user
information and exploiting vulnerabilities of the mobile ecosystems. With the
emergence of large-scale mobile botnets, smartphones can also be used to launch
attacks on mobile networks. The NEMESYS project will develop novel security
technologies for seamless service provisioning in the smart mobile ecosystem,
and improve mobile network security through better understanding of the threat
landscape. NEMESYS will gather and analyze information about the nature of
cyber-attacks targeting mobile users and the mobile network so that appropriate
counter-measures can be taken. We will develop a data collection infrastructure
that incorporates virtualized mobile honeypots and a honeyclient, to gather,
detect and provide early warning of mobile attacks and better understand the
modus operandi of cyber-criminals that target mobile devices. By correlating
the extracted information with the known patterns of attacks from wireline
networks, we will reveal and identify trends in the way that cyber-criminals
launch attacks against mobile devices.Comment: Accepted for publication in Proceedings of the 28th International
Symposium on Computer and Information Sciences (ISCIS'13); 9 pages; 1 figur
5G transport network requirements for the next generation fronthaul interface
To meet the requirements of 5G mobile networks, several radio access technologies, such as millimeter wave communications and massive MIMO, are being proposed. In addition, cloud radio access network (C-RAN) architectures are considered instrumental to fully exploit the capabilities of future 5G RANs. However, RAN centralization imposes stringent requirements on the transport network, which today are addressed with purpose-specific and expensive fronthaul links. As the demands on future access networks rise, so will the challenges in the fronthaul and backhaul segments. It is hence of fundamental importance to consider the design of transport networks alongside the definition of future access technologies to avoid the transport becoming a bottleneck. Therefore, we analyze in this work the impact that future RAN technologies will have on the transport network and on the design of the next generation fronthaul interface. To understand the especially important impact of varying user traffic, we utilize measurements from a real-world 4G network and, taking target 5G performance figures into account, extrapolate its statistics to a 5G scenario. With this, we derive both per-cell and aggregated data rate requirements for 5G transport networks. In addition, we show that the effect of statistical multiplexing is an important factor to reduce transport network capacity requirements and costs. Based on our investigations, we provide guidelines for the development of the 5G transport network architecture.Peer ReviewedPostprint (published version
5G infrastructures supporting end-user and operational services:The 5G-XHaul architectural perspective
We propose an optical-wireless 5G infrastructure offering converged fronthauling/backhauling functions to support both operational and end-user cloud services. A layered architectural structure required to efficiently support these services is shown. The data plane performance of the proposed infrastructure is evaluated in terms of energy consumption and service delay through a novel modelling framework. Our modelling results show that the proposed architecture can offer significant energy savings but there is a clear trade-off between overall energy consumption and service delay.Peer ReviewedPostprint (author's final draft
Use of Machine Learning for energy efficiency in present and future mobile networks
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Given the current evolution trends in mobile cellular networks, which is approaching us towards the future 5G paradigm, novel techniques for network management are in the agenda. Machine Learning techniques are useful for extracting knowledge out of raw data; knowledge that can be applied to improving the experience in the operation of such systems. This paper proposes the use of Machine Learning applied to energy efficiency, which is set to be one major challenge in future network deployments. By studying the cell-level traces collected in a real network, we can study traffic patterns and derive predictive models for different cell load metrics with the aid of different machine learning techniques. Such models are applied into a simulation environment designed to test different algorithms which, according to cell load predictions, dynamically switch on and off base stations with the aim of providing energy savings in a mobile cellular network.Postprint (author's final draft
- …
