347 research outputs found
Recommended from our members
Dietary intake, nutritional status and mental wellbeing of homeless adults in Reading, UK
Malnutrition has been reported in the homeless, yet the specific nutritional issues faced by each homeless community are unclear. This is in part due to nutrient intake often being compared with dietary reference values as opposed to a comparative housed population. In addition, the complex interplay between nutrient intake, reward mediated behaviour and mental illness is frequently overlooked. This study aimed to compare the dietary intake, nutritional status and mental wellbeing of homeless and housed adults. Homeless (n 75) and matched housed (n 75) adults were recruited from Reading (UK). Nutrient intake was determined using the European Prospective Investigation into Cancer and Nutrition Norfolk FFQ. The Patient Health Questionnaire: Somatic Anxiety Depressive Symptoms (PHQ-SADS) assessed for signs of mental illness. Demographic, behavioural and physiological information was collected using closed-ended questions and anthropometric measurements. Overall, dietary intake was poorer in homeless adults who reported higher intakes of salt (8·0 v. 6·4 g, P=0·017), SFA (14·6 v. 13·0 %, P=0·002) and alcohol (5·3 v. 1·9 %, P<0·001) and lower intakes of fibre (13·4 v. 16·3 g, P<0·001), vitamin C (79 v. 109 mg, P<0·001) and fruit (96 v. 260 g, P<0·001) than housed. Smoking, substance misuse and PHQ-SADS scores were also higher in the homeless (P<0·001). Within the homeless population, street homeless (n 24) had lower SFA (13·7 v.15·0 %, P=0·010), Ca (858 v. 1032 mg, P=0·027) and milk intakes (295 v. 449 g, P=0·001) than hostel residents (n 51), which may reflect the issues with food storage. This study highlights the disparity between nutritional status in homeless and housed populations and the need for dietary intervention in the homeless community
Ampicillin-Improved Glucose Tolerance in Diet-Induced Obese C57BL/6NTac Mice Is Age Dependent
Ampicillin has been shown to improve glucose tolerance in mice. We hypothesized that this effect is present only if treatment is initiated prior to weaning and that it disappears when treatment is terminated. High-fat fed C57BL/6NTac mice were divided into groups that received Ampicillin at different ages or not at all. We found that both diet and Ampicillin significantly changed the gut microbiota composition in the animals. Furthermore, there was a significant improvement in glucose tolerance in Ampicillin-treated, five-week-old mice compared to nontreated mice in the control group. At study termination, expressions of mRNA coding for tumor necrosis factor, serum amyloid A, and lactase were upregulated, while the expression of tumor necrosis factor (ligand) superfamily member 15 was downregulated in the ileum of Ampicillin-treated mice. Higher dendritic cell percentages were found systemically in high-fat diet mice, and a lower tolerogenic dendritic cell percentage was found both in relation to high-fat diet and late Ampicillin treatment. The results support our hypothesis that a “window” exists early in life in which an alteration of the gut microbiota affects glucose tolerance as well as development of gut immunity and that this window may disappear after weaning
Dihydrolipoic acid reduces cytochrome b561 proteins.
Cytochrome b561 (Cyt-b561) proteins constitute a family of trans-membrane proteins that are present in a wide variety of organisms. Two of their characteristic properties are the reducibility by ascorbate (ASC) and the presence of two distinct b-type hemes localized on two opposite sides of the membrane. Here we show that the tonoplast-localized and the putative tumor suppressor Cyt-b561 proteins can be reduced by other reductants than ASC and dithionite. A detailed spectral analysis of the ASC-dependent and dihydrolipoic acid (DHLA)-dependent reduction of these two Cyt-b561 proteins is also presented. Our results are discussed in relation to the known antioxidant capability of DHLA as well as its role in the regeneration of other antioxidant compounds of cells. These results allow us to speculate on new biological functions for the trans-membrane Cyt-b561 proteins
Whey protein reduces early life weight gain in mice fed a high-fat diet.
An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel electrophoresis analyses of PCR-derived 16S rRNA gene (V3-region) amplicons. At the end of the study, plasma samples were collected and assayed for glucose, insulin and lipids. Whey significantly reduced body weight gain during the first four weeks of the study compared with casein (P<0.001-0.05). Hereafter weight gain was similar resulting in a 15% lower final body weight in the whey group relative to casein (34.0±1.0 g vs. 40.2±1.3 g, P<0.001). Food intake was unaffected by protein source throughout the study period. Fasting insulin was lower in the whey group (P<0.01) and glucose clearance was improved after an oral glucose challenge (P<0.05). Plasma cholesterol was lowered by whey compared to casein (P<0.001). The composition of the fecal microbiota differed between high- and low-fat groups at 13 weeks (P<0.05) whereas no difference was seen between whey and casein. In conclusion, whey initially reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota composition. Further studies are needed to clarify the mechanisms behind the metabolic effects of whey
Development and characterization of a tamoxifen-resistant breast carcinoma xenograft
A human tamoxifen-resistant mammary carcinoma, MaCa 3366/TAM, originating from a sensitive parental xenograft 3366 was successfully established by treatment of tumour-bearing nude mice with 1–50 mg kg−1tamoxifen for 3 years during routine passaging. Both tumours did not differ significantly in OR- and PR-positivity, however, when compared with the sensitive tumour line, the mean OR content of the TAM-resistant subline is slightly lower. An OR-upregulation following withdrawal of oestradiol treatment was observed in the parental tumours but not in the resistant xenografts. Following long-term treatment with tamoxifen, the histological pattern of the breast carcinoma changed. The more differentiated structures being apparent after treatment with 17β-oestradiol in the original 3366 tumour were not induced in the resistant line. Tamoxifen failed to induce a tumour growth inhibition in comparison to the tamoxifen-sensitive line. The pure anti-oestrogen, ICI 182 780, revealed cross-resistance. Sequence analysis of the hormone-binding domain of the OR of both lines showed no differences, suggesting that either mutations in other regions of the OR are involved in the TAM-resistance phenotype or that mechanisms outside of this protein induced this phenotype. Oestrogen and anti-oestrogen regulate pS2 and cathepsin D expression in 3366 tumours as in the human breast cancer cell line MCF-7. The resistant 3366/TAM tumours have lost this regulation. The established breast cancer xenografts 3366 and 3366/TAM offer the possibility of investigating mechanisms of anti-oestrogen resistance in an in vivo situation. They can be used to test novel approaches to prevent, or to overcome, this resistance in a clinically related manner. © 2000 Cancer Research Campaig
Insulin Treatment Attenuates Small Nerve Fiber Damage in Rat Model of Type 2 Diabetes
Introduction. Current clinical guidelines for management of diabetic peripheral neuropathy (DPN) emphasize good glycemic control. However, this has limited effect on prevention of DPN in type 2 diabetic (T2D) patients. This study investigates the effect of insulin treatment on development of DPN in a rat model of T2D to assess the underlying causes leading to DPN. Methods. Twelve-week-old male Sprague-Dawley rats were allocated to a normal chow diet or a 45% kcal high-fat diet. After eight weeks, the high-fat fed animals received a mild dose of streptozotocin to induce hyperglycemia. Four weeks after diabetes induction, the diabetic animals were allocated into three treatment groups receiving either no insulin or insulin-releasing implants in a high or low dose. During the 12-week treatment period, blood glucose and body weight were monitored weekly, whereas Hargreaves’ test was performed four, eight, and 12 weeks after treatment initiation. At study termination, several blood parameters, body composition, and neuropathy endpoints were assessed. Results. Insulin treatment lowered blood glucose in a dose-dependent manner. In addition, both doses of insulin lowered lipids and increased body fat percentage. High-dose insulin treatment attenuated small nerve fiber damage assessed by Hargreaves’ test and intraepidermal nerve fiber density compared to untreated diabetes and low-dose insulin; however, neuropathy was not completely prevented by tight glycemic control. Linear regression analysis revealed that glycemic status, circulating lipids, and sciatic nerve sorbitol level were all negatively associated with the small nerve fiber damage observed. Conclusion. In summary, our data suggest that high-dose insulin treatment attenuates small nerve fiber damage. Furthermore, data also indicate that both poor glycemic control and dyslipidemia are associated with disease progression. Consequently, this rat model of T2D seems to fit well with progression of DPN in humans and could be a relevant preclinical model to use in relation to research investigating treatment opportunities for DPN
Quantitative proteomics reveals novel proteins and central pathways associated with endocrine resistance in breast cancer
- …
