26,863 research outputs found
Searching for Millisecond Pulsars: Surveys, Techniques and Prospects
Searches for millisecond pulsars (which we here loosely define as those with
periods 20 ms) in the Galactic field have undergone a renaissance in the
past five years. New or recently refurbished radio telescopes utilizing cooled
receivers and state-of-the art digital data acquisition systems are carrying
out surveys of the entire sky at a variety of radio frequencies. Targeted
searches for millisecond pulsars in point sources identified by the {\it Fermi}
Gamma-ray Space Telescope have proved phenomenally successful, with over 50
discoveries in the past five years. The current sample of millisecond pulsars
now numbers almost 200 and, for the first time in 25 years, now outnumbers
their counterparts in Galactic globular clusters. While many of these searches
are motivated to find pulsars which form part of pulsar timing arrays, a wide
variety of interesting systems are now being found. Following a brief overview
of the millisecond pulsar phenomenon, we describe these searches and present
some of the highlights of the new discoveries in the past decade. We conclude
with predictions and prospects for ongoing and future surveys.Comment: 16 pages, 3 figures, accepted for publication in Classical and
Quantum gravit
Near-infrared Observations of Nova V574 Puppis (2004)
We present results obtained from extensive near-infrared spectroscopic and
photometric observations of nova V574 Pup during its 2004 outburst. The
observations were obtained over four months, starting from 2004 November 25
(four days after the nova outburst) to 2005 March 20. The near-IR JHK light
curve is presented - no evidence is seen from it for dust formation to have
occurred during our observations. In the early decline phase, the JHK spectra
of the nova are dominated by emission lines of hydrogen Brackett and Paschen
series, OI, CI and HeI. We also detect the fairly uncommon Fe II line at 1.6872
micron in the early part of our observations. The strengths of the HeI lines at
1.0830 micron and 2.0585 micron are found to become very strong towards the end
of the observations indicating a progression towards higher excitation
conditions in the nova ejecta. The width of the emission lines do not show any
significant change during the course of our observations. The slope of the
continuum spectrum was found to have a lambda^{-2.75} dependence in the early
stages which gradually becomes flatter with time and changes to a free-free
spectral dependence towards the later stages. Recombination analysis of the HI
lines shows deviations from Case B conditions during the initial stages.
However, towards the end of our observations, the line strengths are well
simulated with case B model values with electron density n_e = 10^{9-10}
cm^{-3} and a temperature equal to 10^4 K. Based on our distance estimate to
the nova of 5.5 kpc and the observed free-free continuum emission in the later
part of the observations, we estimate the ionized mass of the ejecta to be
between 10^{-5} and 10^{-6} solar-mass.Comment: 10 pages, 8 figures, Accepted for publication in MNRA
Comment on 'Non-equilibrium thermodynamics of light absorption'
A recent paper by Meszéna and Westerhoff (1999 J. Phys. A: Math. Gen. 32 301) has aimed to address what is referred to as a principal question of biological thermodynamics, the possibility of describing photosynthesis in terms of non-equilibrium thermodynamics. The issue is associated with a misrepresentation of the fundamental photophysics involved, and as a result the analysis is invalid
Modeling inflammation and oxidative stress in gastrointestinal disease development using novel organotypic culture systems.
Gastroesophageal reflux disease (GERD), Barrett's esophagus (BE), graft-versus-host disease (GVHD), and inflammatory bowel diseases such as ulcerative colitis and Crohn's disease are common human gastrointestinal diseases that share inflammation as a key driver for their development. A general outcome resulting from these chronic inflammatory conditions is increased oxidative stress. Oxidative stress is caused by the generation of reactive oxygen and nitrogen species that are part of the normal inflammatory response, but are also capable of damaging cellular DNA, protein, and organelles. Damage to DNA can include DNA strand breaks, point mutations due to DNA adducts, as well as alterations in methylation patterns leading to activation of oncogenes or inactivation of tumor suppressors. There are a number of significant long-term consequences associated with chronic oxidative stress, most notably cancer. Infiltrating immune cells and stromal components of tissue including fibroblasts contribute to dynamic changes occurring in tissue related to disease development. Immune cells can potentiate oxidative stress, and fibroblasts have the capacity to contribute to advanced growth and proliferation of the epithelium and any resultant cancers. Disease models for GERD, BE, GVHD, and ulcerative colitis based on three-dimensional human cell and tissue culture systems that recapitulate in vivo growth and differentiation in inflammatory-associated microphysiological environments would enhance our understanding of disease progression and improve our ability to test for disease-prevention strategies. The development of physiologically relevant, human cell-based culture systems is therefore a major focus of our research. These novel models will be of enormous value, allowing us to test hypotheses and advance our understanding of these disorders, and will have a translational impact allowing us to more rapidly develop therapeutic and chemopreventive agents. In summary, this work to develop advanced human cell-based models of inflammatory conditions will greatly improve our ability to study, prevent, and treat GERD, BE, GVHD, and inflammatory bowel disease. The work will also foster the development of novel therapeutic and preventive strategies that will improve patient care for these important clinical conditions
How Many Cooks Spoil the Soup?
In this work, we study the following basic question: "How much parallelism
does a distributed task permit?" Our definition of parallelism (or symmetry)
here is not in terms of speed, but in terms of identical roles that processes
have at the same time in the execution. We initiate this study in population
protocols, a very simple model that not only allows for a straightforward
definition of what a role is, but also encloses the challenge of isolating the
properties that are due to the protocol from those that are due to the
adversary scheduler, who controls the interactions between the processes. We
(i) give a partial characterization of the set of predicates on input
assignments that can be stably computed with maximum symmetry, i.e.,
, where is the minimum multiplicity of a state in
the initial configuration, and (ii) we turn our attention to the remaining
predicates and prove a strong impossibility result for the parity predicate:
the inherent symmetry of any protocol that stably computes it is upper bounded
by a constant that depends on the size of the protocol.Comment: 19 page
Concorde Noise-Induced Building Vibrations, Montgomery County, Maryland
A series of studies are reported to assess the noise induced building vibrations associated with Concorde operations. The levels of induced vibration and associated indoor/outdoor noise levels resulting from aircraft and nonaircraft events in selected homes, historic and other buildings near Dulles International Airport were recorded. The building response resulting from aircraft operations was found to be directly proportional to the overall sound pressure level and approximately independent of the aircraft type. The noise levels and, consequently, the response levels were observed to be higher for the Concorde operations than for the CTOL operations. Furthermore, the vibration could be closely reproduced by playing aircraft noise through a loudspeaker system located near the vibration measurement location. Nonaircraft events such as door closing were again observed to result in higher response levels than those induced by aircraft
GP-SUM. Gaussian Processes Filtering of non-Gaussian Beliefs
This work studies the problem of stochastic dynamic filtering and state
propagation with complex beliefs. The main contribution is GP-SUM, a filtering
algorithm tailored to dynamic systems and observation models expressed as
Gaussian Processes (GP), and to states represented as a weighted sum of
Gaussians. The key attribute of GP-SUM is that it does not rely on
linearizations of the dynamic or observation models, or on unimodal Gaussian
approximations of the belief, hence enables tracking complex state
distributions. The algorithm can be seen as a combination of a sampling-based
filter with a probabilistic Bayes filter. On the one hand, GP-SUM operates by
sampling the state distribution and propagating each sample through the dynamic
system and observation models. On the other hand, it achieves effective
sampling and accurate probabilistic propagation by relying on the GP form of
the system, and the sum-of-Gaussian form of the belief. We show that GP-SUM
outperforms several GP-Bayes and Particle Filters on a standard benchmark. We
also demonstrate its use in a pushing task, predicting with experimental
accuracy the naturally occurring non-Gaussian distributions.Comment: WAFR 2018, 16 pages, 7 figure
Generalised models for torsional spine and fan magnetic reconnection
Three-dimensional null points are present in abundance in the solar corona,
and the same is likely to be true in other astrophysical environments. Recent
studies suggest that reconnection at such 3D nulls may play an important role
in the coronal dynamics. In this paper the properties of the torsional spine
and torsional fan modes of magnetic reconnection at 3D nulls are investigated.
New analytical models are developed, which for the first time include a current
layer that is spatially localised around the null, extending along either the
spine or the fan of the null. These are complemented with numerical
simulations. The principal aim is to investigate the effect of varying the
degree of asymmetry of the null point magnetic field on the resulting
reconnection process - where previous studies always considered a non-generic
radially symmetric null. The geometry of the current layers within which
torsional spine and torsional fan reconnection occur is found to be strongly
dependent on the symmetry of the magnetic field. Torsional spine reconnection
still occurs in a narrow tube around the spine, but with elliptical
cross-section when the fan eigenvalues are different, and with the short axis
of the ellipse being along the strong field direction. The spatiotemporal peak
current, and the peak reconnection rate attained, are found not to depend
strongly on the degree of asymmetry. For torsional fan reconnection, the
reconnection occurs in a planar disk in the fan surface, which is again
elliptical when the symmetry of the magnetic field is broken. The short axis of
the ellipse is along the weak field direction, with the current being peaked in
these weak field regions. The peak current and peak reconnection rate in this
case are clearly dependent on the asymmetry, with the peak current increasing
but the reconnection rate decreasing as the degree of asymmetry is increased
- …
