8,733 research outputs found
The municipal solid waste landfill as a source of ozone-depleting substances in the United States and United Kingdom
This study provides observation-based national estimates of CFC-11, CFC-12, CFC-113, and 1,1,1-trichloroethane emissions for the United States (US) and United Kingdom (UK) from municipal solid waste (MSW) landfills. The scarcity of national estimates has lead to the assumption that a significant fraction of the lingering ozone-depleting substance (ODS) emissions, which have been detected in industrialized countries, could be emitted from landfills. Spatial coverage was achieved through sampling at seven landfills in Massachusetts and through data provided by nine UK landfills. Linear least square regressions of recovered ODS vs. CH4 were used in combination with national estimates of landfill CH4 emissions to estimate 2006 national US and UK ODS landfill emissions. The ODS landfill emission estimates were then compared to recent estimates of total US and UK ODS emissions. US ODS landfill emissions are 0.4%-1% (0.006-0.09 Gg/year) of total US emissions. UK ODS landfill emission estimates are 1% (0.008 Gg/year) and 6% (0.03 Gg/year) of total UK CFC-11 and CFC-12 emissions, respectively. This indicates that landfills are only a minor source of lingering ODS emissions in the US, but may be more significant for CFC-12 emissions in the UK. The implication is that the majority of current ODS emissions in industrialized countries is likely coming from equipment still in use.United States. National Aeronautics and Space Administration (Grant NNX07AE89G)United States. National Aeronautics and Space Administration (Grant NAG512669)National Science Foundation (U.S.) (Grant ATM-0120468
The Next 50 Years: Considering Gender as a Context for Understanding Young Children’s Peer Relationships
The study of children’s peer relationships has been well represented within the pages of Merrill-Palmer Quarterly. Particularly over the last decade, the pace of publishing studies on peer relationships has increased. Despite this upswing in interest in peer relationships, significant gaps remain. In this article, we focus on a particularly overlooked and significant area of peer relationships, namely, the role of sex-segregated peer interactions and how these relate to development in early childhood. We review why this topic is important for researchers to consider and highlight promising directions for research that we hope will appear in future volumes of Merrill-Palmer Quarterly
Spin Dynamics of the Magnetoresistive Pyrochlore Tl_2Mn_2O_7
Neutron scattering has been used to study the magnetic order and spin
dynamics of the colossal magnetoresistive pyrochlore Tl_2Mn_2O_7. On cooling
from the paramagnetic state, magnetic correlations develop and appear to
diverge at T_C (123 K). In the ferromagnetic phase well defined spin waves are
observed, with a gapless ( meV) dispersion relation E=Dq^{2} as
expected for an ideal isotropic ferromagnet. As T approaches T_C from low T,
the spin waves renormalize, but no significant central diffusive component to
the fluctuation spectrum is observed in stark contrast to the
La(Ca,Ba,Sr)MnO system. These results argue strongly that the
mechanism responsible for the magnetoresistive effect has a different origin in
these two classes of materials.Comment: 4 pages (RevTex), 4 figures (encapsulated postscript), to be
published in Phys. Rev. Let
Ares I-X Ground Diagnostic Prototype
The automation of pre-launch diagnostics for launch vehicles offers three potential benefits: improving safety, reducing cost, and reducing launch delays. The Ares I-X Ground Diagnostic Prototype demonstrated anomaly detection, fault detection, fault isolation, and diagnostics for the Ares I-X first-stage Thrust Vector Control and for the associated ground hydraulics while the vehicle was in the Vehicle Assembly Building at Kennedy Space Center (KSC) and while it was on the launch pad. The prototype combines three existing tools. The first tool, TEAMS (Testability Engineering and Maintenance System), is a model-based tool from Qualtech Systems Inc. for fault isolation and diagnostics. The second tool, SHINE (Spacecraft Health Inference Engine), is a rule-based expert system that was developed at the NASA Jet Propulsion Laboratory. We developed SHINE rules for fault detection and mode identification, and used the outputs of SHINE as inputs to TEAMS. The third tool, IMS (Inductive Monitoring System), is an anomaly detection tool that was developed at NASA Ames Research Center. The three tools were integrated and deployed to KSC, where they were interfaced with live data. This paper describes how the prototype performed during the period of time before the launch, including accuracy and computer resource usage. The paper concludes with some of the lessons that we learned from the experience of developing and deploying the prototype
Modelling and upscaling of transport in carbonates during dissolution: validation and calibration with NMR experiments
We present an experimental and numerical study of transport in carbonates during dissolution and its upscaling from the pore (∼ μm) to core (∼ cm) scale. For the experimental part, we use nuclear magnetic resonance (NMR) to probe molecular displacements (propagators) of an aqueous hydrochloric acid (HCl) solution through a Ketton limestone core. A series of propagator profiles are obtained at a large number of spatial points along the core at multiple time-steps during dissolution. For the numerical part, first, the transport model—a particle-tracking method based on Continuous Time Random Walks (CTRW) by Rhodes et al. (2008)—is validated at the pore scale by matching to the NMR-measured propagators in a beadpack, Bentheimer sandstone, and Portland carbonate Scheven et al. (2005). It was found that the emerging distribution of particle transit times in these samples can be approximated satisfactorily using the power law function ψ(t) ∼ t −1 −β, where 0 < β < 2. Next, the evolution of the propagators during reaction is modelled: at the pore scale, the experimental data is used to calibrate the CTRW parameters; then the shape of the propagators is predicted at later observation times. Finally, a numerical upscaling technique is employed to obtain CTRW parameters for the core. From the NMR-measured propagators, an increasing frequency of displacements in stagnant regions was apparent as the reaction progressed. The present model predicts that non-Fickian behaviour exhibited at the pore scale persists on the centimetre scale
Inhomogeneous Magnetism in La-doped CaMnO3. (II) Mesoscopic Phase Separation due to Lattice-coupled FM Interactions
A detailed investigation of mesoscopic magnetic and crystallographic phase
separation in Ca(1-x)La(x)MnO3, 0.00<=x<=0.20, is reported. Neutron powder
diffraction and DC-magnetization techniques have been used to isolate the
different roles played by electrons doped into the eg level as a function of
their concentration x. The presence of multiple low-temperature magnetic and
crystallographic phases within individual polycrystalline samples is argued to
be an intrinsic feature of the system that follows from the shifting balance
between competing FM and AFM interactions as a function of temperature. FM
double-exchange interactions associated with doped eg electrons are favored
over competing AFM interactions at higher temperatures, and couple more
strongly with the lattice via orbital polarization. These FM interactions
thereby play a privileged role, even at low eg electron concentrations, by
virtue of structural modifications induced above the AFM transition
temperatures.Comment: 8 pages, 7 figure
Revision rates after primary hip and knee replacement in England between 2003 and 2006
<b>Background</b>:
Hip and knee replacement are some of the most frequently performed surgical procedures in the world. Resurfacing of the hip and unicondylar knee replacement are increasingly being used. There is relatively little evidence on their performance. To study performance of joint replacement in England, we investigated revision rates in the first 3 y after hip or knee replacement according to prosthesis type.
<b>Methods and Findings</b>:
We linked records of the National Joint Registry for England and Wales and the Hospital Episode Statistics for patients with a primary hip or knee replacement in the National Health Service in England between April 2003 and September 2006. Hospital Episode Statistics records of succeeding admissions were used to identify revisions for any reason. 76,576 patients with a primary hip replacement and 80,697 with a primary knee replacement were included (51% of all primary hip and knee replacements done in the English National Health Service). In hip patients, 3-y revision rates were 0.9% (95% confidence interval [CI] 0.8%–1.1%) with cemented, 2.0% (1.7%–2.3%) with cementless, 1.5% (1.1%–2.0% CI) with “hybrid” prostheses, and 2.6% (2.1%–3.1%) with hip resurfacing (p < 0.0001). Revision rates after hip resurfacing were increased especially in women. In knee patients, 3-y revision rates were 1.4% (1.2%–1.5% CI) with cemented, 1.5% (1.1%–2.1% CI) with cementless, and 2.8% (1.8%–4.5% CI) with unicondylar prostheses (p < 0.0001). Revision rates after knee replacement strongly decreased with age.
<b>Interpretation</b>:
Overall, about one in 75 patients needed a revision of their prosthesis within 3 y. On the basis of our data, consideration should be given to using hip resurfacing only in male patients and unicondylar knee replacement only in elderly patients
ARID3B increases ovarian tumor burden and is associated with a cancer stem cell gene signature
Ovarian cancer is the most deadly gynecological malignancy since most patients have metastatic disease at the time of diagnosis. Therefore, identification of critical pathways that contribute to ovarian cancer progression is necessary to yield novel therapeutic targets. Recently we reported that the DNA binding protein ARID3B is overexpressed in human ovarian tumors. To determine if ARID3B has oncogenic functions in vivo, ovarian cancer cell lines stably expressing ARID3B were injected intraperitoneally into nude mice. Overexpression of ARID3B increased tumor burden and decreased survival. To assess how ARID3B contributes to the increased tumor growth in vivo, we identified ARID3B induced genes in tumor ascites cells. ARID3B induced expression of genes associated with metastasis and cancer stem cells (CD44, LGR5, PROM1 (CD133), and Notch2). Moreover, ARID3B increased the number of CD133+ (a cancer stem cell marker) cells compared to control cells. The increase in CD133+ cells resulting from ARID3B expression was accompanied by enhanced paclitaxel resistance. Our data demonstrate that ARID3B boosts production CD133+ cells and increases ovarian cancer progression in vivo
Oblique Corrections To The W Width
The lowest-order expression for the partial width to , has no oblique radiative
corrections from new physics if the measured mass is used. Here GeV/ is the muon decay constant. For
the present value of GeV/, and with
GeV, one expects MeV. The total
width is also expected to lack oblique corrections from
new physics, so that . Present data are consistent with this prediction.Comment: 15 pages (LaTeX), one PostScript figure not included (available upon
request
- …
