764 research outputs found
Quality of life effects of androgen deprivation therapy in a prostate cancer cohort in New Zealand: Can we minimize effects using a stratification based on the aldo-keto reductase family 1, member C3 rs12529 gene polymorphism?
Background: Androgen deprivation therapy (ADT) is an effective palliation treatment in men with advanced prostate cancer (PC). However, ADT has well documented side effects that could alter the patient's health-related quality of life (HRQoL). The current study aims to test whether a genetic stratification could provide better knowledge for optimising ADT options to minimize HRQoL effects. Methods: A cohort of 206 PC survivors (75 treated with and 131 without ADT) was recruited with written consent to collect patient characteristics, clinical data and HRQoL data related to PC management. The primary outcomes were the percentage scores under each HRQoL subscale assessed using the European Organisation for Research and Treatment of Cancer Quality of Life questionnaires (QLQ-C30 and PR25) and the Depression Anxiety Stress Scales developed by the University of Melbourne, Australia. Genotyping of these men was carried out for the aldo-keto reductase family 1, member C3 (AKR1C3) rs12529 single nucleotide polymorphism (SNP). Analysis of HRQoL scores were carried out against ADT duration and in association with the AKR1C3 rs12529 SNP using the generalised linear model. P-values <0 · 05 were considered significant, and were further tested for restriction with Bonferroni correction. Results: Increase in hormone treatment-related effects were recorded with long-term ADT compared to no ADT. The C and G allele frequencies of the AKR1C3rs12529 SNP were 53·4 % and 46·6 % respectively. Hormone treatment-related symptoms showed an increase with ADT when associated with the AKR1C3 rs12529 G allele. Meanwhile, decreasing trends on cancer-specific symptoms and increased sexual interest were recorded with no ADT when associated with the AKR1C3 rs12529 G allele and reverse trends with the C allele. As higher incidence of cancer-specific symptoms relate to cancer retention it is possible that associated with the C allele there could be higher incidence of unresolved cancers under no ADT options. Conclusions: If these findings can be reproduced in larger homogeneous cohorts, a genetic stratification based on the AKR1C3 rs12529 SNP, can minimize ADT-related HRQoL effects in PC patients. Our data additionally show that with this stratification it could also be possible to identify men needing ADT for better oncological advantage.</p
From 2000 years of Ganoderma lucidum to recent developments in nutraceuticals
Medicinal mushrooms have been used for centuries as nutraceuticals to improve health and to treat numerous chronic and infectious diseases. One such mushroom is Ganoderma lucidum, commonly known as Lingzhi, a species revered as a medicinal mushroom for treating assorted diseases and prolonging life. The fungus is found in diverse locations, and this may have contributed to confusion regarding the correct taxonomic classification of the genus Ganoderma. G. lucidum was first used to name a specimen found in England and thereafter was naively applied to a different Ganoderma species found in Asia, commonly known as Chinese Lingzhi. Despite the taxonomic confusion, which has largely been uncorrected, the popularity of Lingzhi has escalated across the globe. The current taxonomic situation is now discussed accurately in this Special Issue on Ganoderma. Today it is a multi-billion dollar industry wherein Lingzhi is cultivated or collected from the wild and consumed as a tea, in alcoholic beverages, and as a nutraceutical to confer numerous health benefits. Consumption of nutraceuticals has grown in popularity, and it is becoming increasingly important that active ingredients be identified and that suppliers make substantiated health claims about their products. The objective of this article is to present a review of G. lucidum over the past 2000 years from prized ancient herbal remedy to its use in nutraceuticals and to the establishment of a 2.5 billion $ (US) industry.NZ Focus to BK, MPG and LRF is acknowledged.
YX was funded by a Phyllis Paykel Memorial Scholarship, and
KSB and LRF were supported by the Auckland Cancer Society
Research Centre
Extracts of Feijoa Inhibit Toll-Like Receptor 2 Signaling and Activate Autophagy Implicating a Role in Dietary Control of IBD
Inflammatory bowel disease (IBD) is a heterogeneous chronic inflammatory disease affecting the gut with limited treatment success for its sufferers. This suggests the need for better understanding of the different subtypes of the disease as well as nutritional interventions to compliment current treatments. In this study we assess the ability of a hydrophilic feijoa fraction (F3) to modulate autophagy a process known to regulate inflammation, via TLR2 using IBD cell lines
Effect of ageing and single nucleotide polymorphisms associated with the risk of aggressive prostate cancer in a New Zealand population
Prostate cancer is one of the most significant male health concerns worldwide, and various researchers carrying out molecular diagnostics have indicated that genetic interactions with biological and behavioral factors play an important role in the overall risk and prognosis of this disease. Single nucleotide polymorphisms are increasingly becoming strong biomarker candidates to identify the susceptibility of individuals to prostate cancer. We carried out risk association of different stages of prostate cancer to a number of single nucleotide polymorphisms to identify the susceptible alleles in a New Zealand population and checked the interaction with environmental factors as well. We identified a number of single nucleotide polymorphisms to have associations specifically to the risk of prostate cancer and aggressiveness of the disease, and also certain single nucleotide polymorphisms to be vulnerable to the reported behavioral factors. We have addressed “special” environmental conditions prevalent in New Zealand, which can be used as a model for a bigger worldwide study
Environmental factors and risk of aggressive prostate cancer among a population of New Zealand men - a genotypic approach
Prostate cancer is one of the most significant health concerns for men worldwide. Numerous researchers carrying out molecular diagnostics have indicated that genetic interactions with biological and behavioral factors play an important role in the overall risk and prognosis of this disease. Single nucleotide polymorphisms (SNPs) are increasingly becoming strong biomarker candidates to identify susceptibility to prostate cancer. We carried out a gene × environment interaction analysis linked to aggressive and non-aggressive prostate cancer (PCa) with a number of SNPs. By using this method, we identified the susceptible alleles in a New Zealand population, and examined the interaction with environmental factors. We have identified a number of SNPs that have risk associations both with and without environmental interaction. The results indicate that certain SNPs are associated with disease vulnerability based on behavioral factors. The list of genes with SNPs identified as being associated with the risk of PCa in a New Zealand population is provided in the graphical abstrac
The effect of training in reduced energy density eating and food self-monitoring accuracy on weight loss maintenance
Background: Failure to maintain weight losses in lifestyle change programs continues to be a major problem and warrants investigation of innovative approaches to weight control.Objective: The goal of this study was to compare two novel group interventions, both aimed at improving weight loss maintenance, with a control group.Methods and Procedures: A total of 103 women lost weight on a meal replacement–supplemented diet and were then randomized to one of three conditions for the 14-week maintenance phase: cognitive-behavioral treatment (CBT); CBT with an enhanced food monitoring accuracy (EFMA) program; or these two interventions plus a reduced energy density eating (REDE) program. Assessments were conducted periodically through an 18-month postintervention. Outcome measures included weight and self-reported dietary intake. Data were analyzed using completers only as well as baseline-carried-forward imputation.Results: Participants lost an average of 7.6 plusminus 2.6 kg during the weight loss phase and 1.8 plusminus 2.3 kg during the maintenance phase. Results do not suggest that the EFMA intervention was successful in improving food monitoring accuracy. The REDE group decreased the energy density (ED) of their diets more so than the other two groups. However, neither the REDE nor the EFMA condition showed any advantage in weight loss maintenance. All groups regained weight between 6- and 18-month follow-ups.Discussion: Although no incremental weight maintenance benefit was observed in the EFMA or EFMA + REDE groups, the improvement in the ED of the REDE group\u27s diet, if shown to be sustainable in future studies, could have weight maintenance benefits.<br /
DNA and the chromosome – varied targets for chemotherapy
The nucleus of the cell serves to maintain, regulate, and replicate the critical genetic information encoded by the genome. Genomic DNA is highly associated with proteins that enable simple nuclear structures such as nucleosomes to form higher-order organisation such as chromatin fibres. The temporal association of regulatory proteins with DNA creates a dynamic environment capable of quickly responding to cellular requirements and distress. The response is often mediated through alterations in the chromatin structure, resulting in changed accessibility of specific DNA sequences that are then recognized by specific proteins. Anti-cancer drugs that target cellular DNA have been used clinically for over four decades, but it is only recently that nuclease specific drugs have been developed to not only target the DNA but also other components of the nuclear structure and its regulation. In this review, we discuss some of the new drugs aimed at primary DNA sequences, DNA secondary structures, and associated proteins, keeping in mind that these agents are not only important from a clinical perspective but also as tools for understanding the nuclear environment in normal and cancer cells
MAGE-A cancer/testis antigens inhibit MDM2 ubiquitylation function and promote increased levels of MDM4
Melanoma antigen A (MAGE-A) proteins comprise a structurally and biochemically similar sub-family of Cancer/Testis antigens that are expressed in many cancer types and are thought to contribute actively to malignancy. MAGE-A proteins are established regulators of certain cancer-associated transcription factors, including p53, and are activators of several RING finger-dependent ubiquitin E3 ligases. Here, we show that MAGE-A2 associates with MDM2, a ubiquitin E3 ligase that mediates ubiquitylation of more than 20 substrates including mainly p53, MDM2 itself, and MDM4, a potent p53 inhibitor and MDM2 partner that is structurally related to MDM2. We find that MAGE-A2 interacts with MDM2 via the N-terminal p53-binding pocket and the RING finger domain of MDM2 that is required for homo/hetero-dimerization and for E2 ligase interaction. Consistent with these data, we show that MAGE-A2 is a potent inhibitor of the E3 ubiquitin ligase activity of MDM2, yet it does not have any significant effect on p53 turnover mediated by MDM2. Strikingly, however, increased MAGE-A2 expression leads to reduced ubiquitylation and increased levels of MDM4. Similarly, silencing of endogenous MAGE-A expression diminishes MDM4 levels in a manner that can be rescued by the proteasomal inhibitor, bortezomid, and permits increased MDM2/MDM4 association. These data suggest that MAGE-A proteins can: (i) uncouple the ubiquitin ligase and degradation functions of MDM2; (ii) act as potent inhibitors of E3 ligase function; and (iii) regulate the turnover of MDM4. We also find an association between the presence of MAGE-A and increased MDM4 levels in primary breast cancer, suggesting that MAGE-A-dependent control of MDM4 levels has relevance to cancer clinically
Personalised nutrition and health
This article is one of a series commissioned by The BMJ. Open access fees for the series were funded by SwissRe, which had no input into the commissioning or peer review of the articles.S
- …
