2,614 research outputs found

    Pennsylvanian-Early Triassic stratigraphy in the Alborz Mountains (Iran)

    Get PDF
    New fieldwork was carried out in the central and eastern Alborz, addressing the sedimentary succession from the Pennsylvanian to the Early Triassic. A regional synthesis is proposed, based on sedimentary analysis and a wide collection of new palaeontological data. The Moscovian Qezelqaleh Formation, deposited in a mixed coastal marine and alluvial setting, is present in a restricted area of the eastern Alborz, transgressing on the Lower Carboniferous Mobarak and Dozdehband formations. The late Gzhelian–early Sakmarian Dorud Group is instead distributed over most of the studied area, being absent only in a narrow belt to the SE. The Dorud Group is typically tripartite, with a terrigenous unit in the lower part (Toyeh Formation), a carbonate intermediate part (Emarat and Ghosnavi formations, the former particularly rich in fusulinids), and a terrigenous upper unit (Shah Zeid Formation), which however seems to be confined to the central Alborz. A major gap in sedimentation occurred before the deposition of the overlying Ruteh Limestone, a thick package of packstone–wackestone interpreted as a carbonate ramp of Middle Permian age (Wordian–Capitanian). The Ruteh Limestone is absent in the eastern part of the range, and everywhere ends with an emersion surface, that may be karstified or covered by a lateritic soil. The Late Permian transgression was directed southwards in the central Alborz, where marine facies (Nesen Formation) are more common. Time-equivalent alluvial fans with marsh intercalations and lateritic soils (Qeshlaq Formation) are present in the east. Towards the end of the Permian most of the Alborz emerged, the marine facies being restricted to a small area on the Caspian side of the central Alborz. There, the Permo-Triassic boundary interval is somewhat similar to the Abadeh–Shahreza belt in central Iran, and contains oolites, flat microbialites and domal stromatolites, forming the base of the Elikah Formation. The P–T boundary is established on the basis of conodonts, small foraminifera and stable isotope data. The development of the lower and middle part of the Elikah Formation, still Early Triassic in age, contains vermicular bioturbated mudstone/wackestone, and anachronostic-facies-like gastropod oolites and flat pebble conglomerates. Three major factors control the sedimentary evolution. The succession is in phase with global sea-level curve in the Moscovian and from the Middle Permian upwards. It is out of phase around the Carboniferous–Permian boundary, when the Dorud Group was deposited during a global lowstand of sealevel. When the global deglaciation started in the Sakmarian, sedimentation stopped in the Alborz and the area emerged. Therefore, there is a consistent geodynamic control. From the Middle Permian upwards, passive margin conditions control the sedimentary evolution of the basin, which had its depocentre(s) to the north. Climate also had a significant role, as the Alborz drifted quickly northwards with other central Iran blocks towards the Turan active margin. It passed from a southern latitude through the aridity belt in the Middle Permian, across the equatorial humid belt in the Late Permian and reached the northern arid tropical belt in the Triassic

    Measurement of the Associated γ+μ±\gamma + \mu^\pm Production Cross Section in ppˉp \bar p Collisions at s=1.8\sqrt{s} = 1.8 TeV

    Full text link
    We present the first measurement of associated direct photon + muon production in hadronic collisions, from a sample of 1.8 TeV ppˉp \bar p collisions recorded with the Collider Detector at Fermilab. Quantum chromodynamics (QCD) predicts that these events are primarily from the Compton scattering process cgcγcg \to c\gamma, with the final state charm quark producing a muon. Hence this measurement is sensitive to the charm quark content of the proton. The measured cross section of 29±9pb129\pm 9 pb^{-1} is compared to a leading-order QCD parton shower model as well as a next-to-leading-order QCD calculation.Comment: 12 pages, 4 figures Added more detailed description of muon background estimat

    Search for the Supersymmetric Partner of the Top-Quark in ppˉp \bar{p} Collisions at s=1.8TeV\sqrt{s} = 1.8 {\rm TeV}

    Full text link
    We report on a search for the supersymmetric partner of the top quark (stop) produced in ttˉt \bar{t} events using 110pb1110 {\rm pb}^{-1} of ppˉp \bar{p} collisions at s=1.8TeV\sqrt{s} = 1.8 {\rm TeV} recorded with the Collider Detector at Fermilab. In the case of a light stop squark, the decay of the top quark into stop plus the lightest supersymmetric particle (LSP) could have a significant branching ratio. The observed events are consistent with Standard Model ttˉt \bar{t} production and decay. Hence, we set limits on the branching ratio of the top quark decaying into stop plus LSP, excluding branching ratios above 45% for a LSP mass up to 40 {\rm GeV/c}2^{2}.Comment: 11 pages, 4 figure

    Search for Second-Generation Scalar Leptoquarks in ppˉ\bm{p \bar{p}} Collisions at s\sqrt{s}=1.96 TeV

    Get PDF
    Results on a search for pair production of second generation scalar leptoquark in ppˉp \bar{p} collisions at s\sqrt{s}=1.96 TeV are reported. The data analyzed were collected by the CDF detector during the 2002-2003 Tevatron Run II and correspond to an integrated luminosity of 198 pb1^{-1}. Leptoquarks (LQ) are sought through their decay into (charged) leptons and quarks, with final state signatures represented by two muons and jets and one muon, large transverse missing energy and jets. We observe no evidence for LQLQ production and derive 95% C.L. upper limits on the LQLQ production cross sections as well as lower limits on their mass as a function of β\beta, where β\beta is the branching fraction for LQμqLQ \to \mu q.Comment: 9 pages (3 author list) 5 figure

    Combined search for the standard model Higgs boson decaying to a bb pair using the full CDF data set

    Get PDF
    We combine the results of searches for the standard model Higgs boson based on the full CDF Run II data set obtained from sqrt(s) = 1.96 TeV p-pbar collisions at the Fermilab Tevatron corresponding to an integrated luminosity of 9.45/fb. The searches are conducted for Higgs bosons that are produced in association with a W or Z boson, have masses in the range 90-150 GeV/c^2, and decay into bb pairs. An excess of data is present that is inconsistent with the background prediction at the level of 2.5 standard deviations (the most significant local excess is 2.7 standard deviations).Comment: To be published in Phys. Rev. Lett (v2 contains minor updates based on comments from PRL

    Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a measurement of the top quark pair production cross section in ppbar collisions at sqrt(s)=1.96 TeV using 318 pb^{-1} of data collected with the Collider Detector at Fermilab. We select ttbar decays into the final states e nu + jets and mu nu + jets, in which at least one b quark from the t-quark decays is identified using a secondary vertex-finding algorithm. Assuming a top quark mass of 178 GeV/c^2, we measure a cross section of 8.7 +-0.9 (stat) +1.1-0.9 (syst) pb. We also report the first observation of ttbar with significance greater than 5 sigma in the subsample in which both b quarks are identified, corresponding to a cross section of 10.1 +1.6-1.4(stat)+2.0-1.3 (syst) pb.Comment: Accepted for publication in Physics Review Letters, 7 page

    Inclusive jet cross section in pˉp{\bar p p} collisions at s=1.8\sqrt{s}=1.8 TeV

    Full text link
    The inclusive jet differential cross section has been measured for jet transverse energies, ETE_T, from 15 to 440 GeV, in the pseudorapidity region 0.1η\leq | \eta| \leq 0.7. The results are based on 19.5 pb1^{-1} of data collected by the CDF collaboration at the Fermilab Tevatron collider. The data are compared with QCD predictions for various sets of parton distribution functions. The cross section for jets with ET>200E_T>200 GeV is significantly higher than current predictions based on O(αs3\alpha_s^3) perturbative QCD calculations. Various possible explanations for the high-ETE_T excess are discussed.Comment: 8 pages with 2 eps uu-encoded figures Submitted to Physical Review Letter

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Inclusive search for same-sign dilepton signatures in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    An inclusive search is presented for new physics in events with two isolated leptons (e or mu) having the same electric charge. The data are selected from events collected from p p collisions at root s = 7 TeV by the ATLAS detector and correspond to an integrated luminosity of 34 pb(-1). The spectra in dilepton invariant mass, missing transverse momentum and jet multiplicity are presented and compared to Standard Model predictions. In this event sample, no evidence is found for contributions beyond those of the Standard Model. Limits are set on the cross-section in a fiducial region for new sources of same-sign high-mass dilepton events in the ee, e mu and mu mu channels. Four models predicting same-sign dilepton signals are constrained: two descriptions of Majorana neutrinos, a cascade topology similar to supersymmetry or universal extra dimensions, and fourth generation d-type quarks. Assuming a new physics scale of 1 TeV, Majorana neutrinos produced by an effective operator V with masses below 460 GeV are excluded at 95% confidence level. A lower limit of 290 GeV is set at 95% confidence level on the mass of fourth generation d-type quarks
    corecore