1,224 research outputs found
The Strong Multifield Slowroll Condition and Spiral Inflation
We point out the existing confusions about the slowroll parameters and
conditions for multifield inflation. If one requires the fields to roll down
the gradient flow, we find that only articles adopting the Hubble slowroll
expansion are on the right track, and a correct condition can be found in a
recent book by Liddle and Lyth. We further analyze this condition and show that
the gradient flow requirement is stronger than just asking for a slowly
changing, quasi-de Sitter solution. Therefore it is possible to have a
multifield slowroll model that does not follow the gradient flow. Consequently,
it no longer requires the gradient to be small. It even bypasses the first
slowroll condition and some related no-go theorems from string theory. We
provide the "spiral inflation" as a generic blueprint of such inflation model
and show that it relies on a monodromy locus---a common structure in string
theory effective potentials.Comment: 12 pages, version 4, cosmetic changes recommended by referee,
resubmitting to PR
Probability of Slowroll Inflation in the Multiverse
Slowroll after tunneling is a crucial step in one popular framework of the
multiverse---false vacuum eternal inflation (FVEI). In a landscape with a large
number of fields, we provide a heuristic estimation for its probability. We
find that the chance to slowroll is exponentially suppressed, where the
exponent comes from the number of fields. However, the relative probability to
have more e-foldings is only mildly suppressed as with
. Base on these two properties, we show that the FVEI picture is
still self-consistent and may have a strong preference between different
slowroll models.Comment: version 3, 21 pages, resubmit to PRD recommanded by refere
Chaotic Inflation with Time-Variable Space Dimensions
Assuming the space dimension is not constant but decreases during the
expansion of the Universe, we study chaotic inflation with the potential
. Our investigations are based on a model Universe with variable
space dimensions. We write down field equations in the slow-roll approximation,
and define slow-roll parameters by assuming the number of space dimensions
decreases continuously as the Universe expands. The dynamical character of the
space dimension shifts the initial and final value of the inflaton field to
larger values. We obtain an upper limit for the space dimension at the Planck
length. This result is in agreement with previous works for the effective time
variation of the Newtonian gravitational constant in a model Universe with
variable space dimensions.Comment: 19 pages, To be published in Int.J.Mod.Phys.D. Minor changes to match
accepted versio
Cosmological consequences of particle creation during inflation
Particle creation during inflation is considered. It could be important for
species whose interaction is of gravitational strength or weaker. A complete
but economical formalism is given for spin-zero and spin-half particles, and
the particle abundance is estimated on the assumption that the particle mass in
the early universe is of order the Hubble parameter . It is roughly the same
for both spins, and it is argued that the same estimate should hold for higher
spin particles in particular the gravitino. The abundance is bigger than that
from the usual particle collision mechanism if the inflationary energy scale is
of order , but not if it is much lower.Comment: 17 pages, no Figure
Contribution of the hybrid inflation waterfall to the primordial curvature perturbation
A contribution to the curvature perturbation will be generated
during the waterfall that ends hybrid inflation, that may be significant on
small scales. In particular, it may lead to excessive black hole formation. We
here consider standard hybrid inflation, where the tachyonic mass of the
waterfall field is much bigger than the Hubble parameter. We calculate
in the simplest case, and see why earlier calculations of
are incorrect.Comment: Simpler and more complete results, especiallly for delta N approac
Evolution of fNL to the adiabatic limit
We study inflationary perturbations in multiple-field models, for which zeta
typically evolves until all isocurvature modes decay--the "adiabatic limit". We
use numerical methods to explore the sensitivity of the nonlinear parameter fNL
to the process by which this limit is achieved, finding an appreciable
dependence on model-specific data such as the time at which slow-roll breaks
down or the timescale of reheating. In models with a sum-separable potential
where the isocurvature modes decay before the end of the slow-roll phase we
give an analytic criterion for the asymptotic value of fNL to be large. Other
examples can be constructed using a waterfall field to terminate inflation
while fNL is transiently large, caused by descent from a ridge or convergence
into a valley. We show that these two types of evolution are distinguished by
the sign of the bispectrum, and give approximate expressions for the peak fNL.Comment: v1: 25 pages, plus Appendix and bibliography, 6 figures. v2: minor
edits to match published version in JCA
The abundance of relativistic axions in a flaton model of Peccei-Quinn symmetry
Flaton models of Peccei-Quinn symmetry have good particle physics motivation,
and are likely to cause thermal inflation leading to a well-defined cosmology.
They can solve the problem, and generate viable neutrino masses.
Canonical flaton models predict an axion decay constant F_a of order 10^{10}
GeV and generic flaton models give F_a of order 10^9 GeV as required by
observation. The axion is a good candidate for cold dark matter in all cases,
because its density is diluted by flaton decay if F_a is bigger than 10^{12}
GeV. In addition to the dark matter axions, a population of relativistic axions
is produced by flaton decay, which at nucleosynthesis is equivalent to some
number \delta N_\nu of extra neutrino species. Focussing on the canonical
model, containing three flaton particles and two flatinos, we evaluate all of
the flaton-flatino-axion interactions and the corresponding axionic decay
rates. They are compared with the dominant hadronic decay rates, for both DFSZ
and KSVZ models. These formulas provide the basis for a precise calculation of
the equivalent \delta N_\nu in terms of the parameters (masses and couplings).
The KSVZ case is probably already ruled out by the existing bound \delta
N_\nu\lsim 1. The DFSZ case is allowed in a significant region of parameter
space, and will provide a possible explanation for any future detection of
nonzero
Observational constraints on the spectral index of the cosmological curvature perturbation
We evaluate the observational constraints on the spectral index , in the
context of the CDM hypothesis which represents the simplest viable
cosmology. We first take to be practically scale-independent. Ignoring
reionization, we find at a nominal 2- level . If
we make the more realisitic assumption that reionization occurs when a fraction
to 1 of the matter has collapsed, the 2- lower bound is
unchanged while the 1- bound rises slightly. These constraints are
compared with the prediction of various inflation models. Then we investigate
the two-parameter scale-dependent spectral index, predicted by running-mass
inflation models, and find that present data allow significant scale-dependence
of , which occurs in a physically reasonable regime of parameter space.Comment: ReVTeX, 15 pages, 5 figures and 3 tables, uses epsf.sty Improved
treatment of reionization and small bug fixed in the constant n case; more
convenient parameterization and better treatment of the n dependence in the
CMB anisotropy for the running mass case; conclusions basically unchanged;
references adde
- …
