75 research outputs found
The curvature perturbation at second order
We give an explicit relation, up to second-order terms, between scalar-field fluctuations defined on spatially-flat slices and the curvature perturbation on uniform-density slices. This expression is a necessary ingredient for calculating observable quantities at second-order and beyond in multiple-field inflation. We show that traditional cosmological perturbation theory and the `separate universe' approach yield equivalent expressions for superhorizon wavenumbers, and in particular that all nonlocal terms can be eliminated from the perturbation-theory expressions
Non-Gaussianity in Axion N-flation Models
We study perturbations in the multifield axion N-flation model, taking account of the full cosine potential. We find significant differences from previous analyses which made a quadratic approximation to the potential. The tensor-to-scalar ratio and the scalar spectral index move to lower values, which nevertheless provide an acceptable fit to observation. Most significantly, we find that the bispectrum non-Gaussianity parameter fNL may be large, typically of order 10 for moderate values of the axion decay constant, increasing to of order 100 for decay constants slightly smaller than the Planck scale. Such a non-Gaussian fraction is detectable. We argue that this property is generic in multifield models of hilltop inflation
Non-gaussianity of inflationary field perturbations from the field equation
We calculate the tree-level bispectrum of the inflaton field perturbation
directly from the field equations, and construct the corresponding f_NL
parameter. Our results agree with previous ones derived from the Lagrangian. We
argue that quantum theory should only be used to calculate the correlators when
they first become classical a few Hubble times after horizon exit, the
classical evolution taking over thereafter.Comment: 16 pages, uses iopart.sty. v2: replaced with version accepted by
JCAP; minor changes of wording only. v3: supersedes version published by
journal; typo fixed in Eq. (20) and updated references. v4: sign errors in
Eqs. (32) and (38) correcte
The inflationary trispectrum
We calculate the trispectrum of the primordial curvature perturbation
generated by an epoch of slow-roll inflation in the early universe, and
demonstrate that the non-gaussian signature imprinted at horizon crossing is
unobservably small, of order tau_NL < r/50, where r < 1 is the tensor-to-scalar
ratio. Therefore any primordial non-gaussianity observed in future microwave
background experiments is likely to have been synthesized by gravitational
effects on superhorizon scales. We discuss the application of Maldacena's
consistency condition to the trispectrum.Comment: 23 pages, 2 diagrams drawn with feynmp.sty, uses iopart.cls. v2,
replaced with version accepted by JCAP. Estimate of maximal tau_NL refined in
Section 5, resulting in smaller numerical value. Sign errors in Eq. (44) and
Eq. (48) corrected. Some minor notational change
The δN formula is the dynamical renormalization group
We derive the 'separate universe' method for the inflationary bispectrum,
beginning directly from a field-theory calculation. We work to tree-level in
quantum effects but to all orders in the slow-roll expansion, with masses
accommodated perturbatively. Our method provides a systematic basis to account
for novel sources of time-dependence in inflationary correlation functions, and
has immediate applications. First, we use our result to obtain the correct
matching prescription between the 'quantum' and 'classical' parts of the
separate universe computation. Second, we elaborate on the application of this
method in situations where its validity is not clear. As a by-product of our
calculation we give the leading slow-roll corrections to the three-point
function of field fluctuations on spatially flat hypersurfaces in a canonical,
multiple-field model.Comment: v1: 33 pages, plus appendix and references; 5 figures. v2:
typographical typos fixed, minor changes to the main text and abstract,
reference added; matches version published in JCA
On the Physical Significance of Infra-red Corrections to Inflationary Observables
Inflationary observables, like the power spectrum, computed at one- and
higher-order loop level seem to be plagued by large infra-red corrections. In
this short note, we point out that these large infra-red corrections appear
only in quantities which are not directly observable. This is in agreement with
general expectations concerning infra-red effects.Comment: 11 pages; LateX file; 5 figures. Some coefficients in Eq.(A6)
corrected; References adde
Generating the curvature perturbation at the end of inflation
The dominant contribution to the primordial curvature perturbation may be
generated at the end of inflation. Taking the end of inflation to be sudden,
formulas are presented for the spectrum, spectral tilt and non-gaussianity.
They are evaluated for a minimal extension of the original hybrid inflation
model.Comment: 5 pages. v3: as it will appear in JCA
Non-gaussianity from the inflationary trispectrum
We present an estimate for the non-linear parameter \tau_NL, which measures
the non-gaussianity imprinted in the trispectrum of the comoving curvature
perturbation, \zeta. Our estimate is valid throughout the inflationary era,
until the slow-roll approximation breaks down, and takes into account the
evolution of perturbations on superhorizon scales. We find that the
non-gaussianity is always small if the field values at the end of inflation are
negligible when compared to their values at horizon crossing. Under the same
assumption, we show that in Nflation-type scenarios, where the potential is a
sum of monomials, the non-gaussianity measured by \tau_NL is independent of the
couplings and initial conditions.Comment: 15 pages, uses iopart.sty. Replaced with version accepted by JCAP;
journal reference adde
Diagrammatic approach to non-Gaussianity from inflation
We present Feynman type diagrams for calculating the n-point function of the
primordial curvature perturbation in terms of scalar field perturbations during
inflation. The diagrams can be used to evaluate the corresponding terms in the
n-point function at tree level or any required loop level. Rules are presented
for drawing the diagrams and writing down the corresponding terms in real space
and Fourier space. We show that vertices can be renormalised to automatically
account for diagrams with dressed vertices. We apply these rules to calculate
the primordial power spectrum up to two loops, the bispectrum including loop
corrections, and the trispectrum.Comment: 17 pages, 13 figures. v2: Comments and references added, v3:
Introduction expanded, subsection on evaluating loop diagrams added, minor
errors corrected, references adde
- …
