13,690 research outputs found

    Tunneling magnetoresistance in diluted magnetic semiconductor tunnel junctions

    Full text link
    Using the spin-polarized tunneling model and taking into account the basic physics of ferromagnetic semiconductors, we study the temperature dependence of the tunneling magnetoresistance (TMR) in the diluted magnetic semiconductor (DMS) trilayer heterostructure system (Ga,Mn)As/AlAs/(Ga,Mn)As. The experimentally observed TMR ratio is in reasonable agreement with our result based on the typical material parameters. It is also shown that the TMR ratio has a strong dependence on both the itinerant-carrier density and the magnetic ion density in the DMS electrodes. This can provide a potential way to achieve larger TMR ratio by optimally adjusting the material parameters.Comment: 5 pages (RevTex), 3 figures (eps), submitted to PR

    Detecting time-fragmented cache attacks against AES using Performance Monitoring Counters

    Get PDF
    Cache timing attacks use shared caches in multi-core processors as side channels to extract information from victim processes. These attacks are particularly dangerous in cloud infrastructures, in which the deployed countermeasures cause collateral effects in terms of performance loss and increase in energy consumption. We propose to monitor the victim process using an independent monitoring (detector) process, that continuously measures selected Performance Monitoring Counters (PMC) to detect the presence of an attack. Ad-hoc countermeasures can be applied only when such a risky situation arises. In our case, the victim process is the AES encryption algorithm and the attack is performed by means of random encryption requests. We demonstrate that PMCs are a feasible tool to detect the attack and that sampling PMCs at high frequencies is worse than sampling at lower frequencies in terms of detection capabilities, particularly when the attack is fragmented in time to try to be hidden from detection

    Perspectives on testicular sex cord-stromal tumors and those composed of both germ cells and sex cord-stromal derivatives with a comparison to corresponding ovarian neoplasms

    Get PDF
    Sex cord-stromal tumors (SCSTs) are the second most frequent category of testicular neoplasms, accounting for approximately 2–5% of cases. Both genetic and epigenetic factors account for the differences in frequency and histologic composition between testicular and ovarian SCSTs. For example, large cell calcifying Sertoli cell tumor and intratubular large cell hyalinizing Sertoli cell neoplasia occur in the testis but have not been described in the ovary. In this article, we discuss recently described diagnostic entities as well as inconsistencies in nomenclature used in the recent World Health Organization classifications of SCSTs in the testis and ovary. We also thoroughly review the topic of neoplasms composed of both germ cells and sex cord derivatives with an emphasis on controversial aspects. These include “dissecting gonadoblastoma” and testicular mixed germ cell-sex cord stromal tumor (MGC-SCST). The former is a recently described variant of gonadoblastoma that sometimes is an immediate precursor of germinoma in the dysgenetic gonads of patients with a disorder of sex development. Although the relationship of “dissecting gonadoblastoma” to the previously described undifferentiated gonadal tissue is complex and not entirely resolved, we believe that it is preferable to continue to use the term undifferentiated gonadal tissue for those cases that are not neoplastic and are considered to be the precursor of classical gonadoblastoma. Although the existence of testicular MGC-SCST has been challenged, the most recent evidence supports its existence; however, testicular MGC-SCST differs significantly from ovarian examples due to both genetic and epigenetic factors

    Rapid Cycling and Exceptional Yield in a Metal-Organic Framework Water Harvester.

    Get PDF
    Sorbent-assisted water harvesting from air represents an attractive way to address water scarcity in arid climates. Hitherto, sorbents developed for this technology have exclusively been designed to perform one water harvesting cycle (WHC) per day, but the productivities attained with this approach cannot reasonably meet the rising demand for drinking water. This work shows that a microporous aluminum-based metal-organic framework, MOF-303, can perform an adsorption-desorption cycle within minutes under a mild temperature swing, which opens the way for high-productivity water harvesting through rapid, continuous WHCs. Additionally, the favorable dynamic water sorption properties of MOF-303 allow it to outperform other commercial sorbents displaying excellent steady-state characteristics under similar experimental conditions. Finally, these findings are implemented in a new water harvester capable of generating 1.3 L kgMOF -1 day-1 in an indoor arid environment (32% relative humidity, 27 °C) and 0.7 L kgMOF -1 day-1 in the Mojave Desert (in conditions as extreme as 10% RH, 27 °C), representing an improvement by 1 order of magnitude over previously reported devices. This study demonstrates that creating sorbents capable of rapid water sorption dynamics, rather than merely focusing on high water capacities, is crucial to reach water production on a scale matching human consumption

    Prediction of noise from serrated trailing edges

    Get PDF
    A new analytical model is developed for the prediction of noise from serrated trailing edges. The model generalizes Amiet’s trailing-edge noise theory to sawtooth trailing edges, resulting in a complicated partial differential equation. The equation is then solved by means of a Fourier expansion technique combined with an iterative procedure. The solution is validated through comparison with the finite element method for a variety of serrations at different Mach numbers. The results obtained using the new model predict noise reduction of up to 10 dB at 90^{\circ } above the trailing edge, which is more realistic than predictions based on Howe’s model and also more consistent with experimental observations. A thorough analytical and numerical analysis of the physical mechanism is carried out and suggests that the noise reduction due to serration originates primarily from interference effects near the trailing edge. A closer inspection of the proposed mathematical model has led to the development of two criteria for the effectiveness of the trailing-edge serrations, consistent but more general than those proposed by Howe. While experimental investigations often focus on noise reduction at 90^{\circ } above the trailing edge, the new analytical model shows that the destructive interference scattering effects due to the serrations cause significant noise reduction at large polar angles, near the leading edge. It has also been observed that serrations can significantly change the directivity characteristics of the aerofoil at high frequencies and even lead to noise increase at high Mach numbers.The first author (BL) wishes to gratefully acknowledge the financial support co-funded by the Cambridge Commonwealth European and International Trust and China Scholarship Council. The second author (MA) would like to acknowledge the financial support of the Royal Academy of Engineering. The third author (SS) wishes to gratefully acknowledge the support of the Royal Commission for the exhibition of 1851.This is the author accepted manuscript. The final version is available from Cambridge University Press via http://dx.doi.org/10.1017/jfm.2016.13

    Structure and electronic properties of the (3×3\sqrt{3}\times \sqrt{3})R30R30^{\circ} SnAu2_2/Au(111) surface alloy

    Full text link
    We have investigated the atomic and electronic structure of the (3×3\sqrt{3}\times \sqrt{3})R30R30^{\circ} SnAu2_2/Au(111) surface alloy. Low energy electron diffraction and scanning tunneling microscopy measurements show that the native herringbone reconstruction of bare Au(111) surface remains intact after formation of a long range ordered (3×3\sqrt{3}\times \sqrt{3})R30R30^{\circ} SnAu2_22/Au(111) surface alloy. Angle-resolved photoemission and two-photon photoemission spectroscopy techniques reveal Rashba-type spin-split bands in the occupied valence band with comparable momentum space splitting as observed for the Au(111) surface state, but with a hole-like parabolic dispersion. Our experimental findings are compared with density functional theory (DFT) calculation that fully support our experimental findings. Taking advantage of the good agreement between our DFT calculations and the experimental results, we are able to extract that the occupied Sn-Au hybrid band is of (s, d)-orbital character while the unoccupied Sn-Au hybrid bands are of (p, d)-orbital character. Hence, we can conclude that the Rashba-type spin splitting of the hole-like Sn-Au hybrid surface state is caused by the significant mixing of Au d- to Sn s-states in conjunction with the strong atomic spin-orbit coupling of Au, i.e., of the substrate.Comment: Copyright: https://journals.aps.org/authors/transfer-of-copyright-agreement; All copyrights by AP

    Grain boundary effects on magnetotransport in bi-epitaxial films of La0.7_{0.7}Sr0.3_{0.3}MnO3_3

    Full text link
    The low field magnetotransport of La0.7_{0.7}Sr0.3_{0.3}MnO3_3 (LSMO) films grown on SrTiO3_3 substrates has been investigated. A high qualtity LSMO film exhibits anisotropic magnetoresistance (AMR) and a peak in the magnetoresistance close to the Curie temperature of LSMO. Bi-epitaxial films prepared using a seed layer of MgO and a buffer layer of CeO2_2 display a resistance dominated by grain boundaries. One film was prepared with seed and buffer layers intact, while a second sample was prepared as a 2D square array of grain boundaries. These films exhibit i) a low temperature tail in the low field magnetoresistance; ii) a magnetoconductance with a constant high field slope; and iii) a comparably large AMR effect. A model based on a two-step tunneling process, including spin-flip tunneling, is discussed and shown to be consistent with the experimental findings of the bi-epitaxial films.Comment: REVTeX style; 14 pages, 9 figures. Figure 1 included in jpeg format (zdf1.jpg); the eps was huge. Accepted to Phys. Rev.
    corecore