176 research outputs found
Orbital contribution to the magnetic properties of nanowires: Is the orbital polarization ansatz justified?
We show that considerable orbital magnetic moments and magneto-crystalline
anisotropy energies are obtained for a Fe monatomic wire described in a
tight-binding method with intra-atomic electronic interactions treated in a
full Hartree Fock (HF) decoupling scheme. Even-though the use of the orbital
polarization ansatz with simplified Hamiltonians leads to fairly good results
when the spin magnetization is saturated this is not the case of unsaturated
systems. We conclude that the full HF scheme is necessary to investigate low
dimensional systems
NN final-state interaction in two-nucleon knockout from
The influence of the mutual interaction between the two outgoing nucleons
(NN-FSI) in electro- and photoinduced two-nucleon knockout from has
been investigated perturbatively. It turns out that the effect of NN-FSI
depends on the kinematics and on the type of reaction considered. The effect is
generally larger in pp- than in pn-knockout and in electron induced than in
photoinduced reactions.
In superparallel kinematics NN-FSI leads in the channel to a
strong increase of the cross section, that is mainly due to a strong
enhancement of the -current contribution. In pn-emission, however, this
effect is partially cancelled by a destructive interference with the seagull
current. For photoreactions NN-FSI is considerably reduced in superparallel
kinematics and can be practically negligible in specific kinematics.Comment: 16 pages, 9 figure
Evidence for an Excess of Soft Photons in Hadronic Decays of Z^0
Soft photons inside hadronic jets converted in front of the DELPHI main
tracker (TPC) in events of qqbar disintegrations of the Z^0 were studied in the
kinematic range 0.2 < E_gamma < 1 GeV and transverse momentum with respect to
the closest jet direction p_T < 80 MeV/c. A clear excess of photons in the
experimental data as compared to the Monte Carlo predictions is observed. This
excess (uncorrected for the photon detection efficiency) is (1.17 +/- 0.06 +/-
0.27) x 10^{-3} gamma/jet in the specified kinematic region, while the expected
level of the inner hadronic bremsstrahlung (which is not included in the Monte
Carlo) is (0.340 +/- 0.001 +/- 0.038) x 10^{-3} gamma/jet. The ratio of the
excess to the predicted bremsstrahlung rate is then (3.4 +/- 0.2 +/- 0.8),
which is similar in strength to the anomalous soft photon signal observed in
fixed target experiments with hadronic beams.Comment: 37 pages, 9 figures, Accepted by Eur. Phys. J.
The ALICE Transition Radiation Detector: Construction, operation, and performance
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection. (c) 2017 CERN for the benefit of the Authors. Published by Elsevier B.V
Related peripheral blood stem cell donors experience more severe symptoms and less complete recovery at one year compared to unrelated donors
Planck intermediate results I : Further validation of new Planck clusters with XMM-Newton
Peer reviewe
Japan Perspectives Recent Articles from the Tokyo Foundation Website [No.3]
oai:repo-tkfd.jp:00000010articl
- …
