40 research outputs found
Ecological connectivity in the three-dimensional urban green volume using waveform airborne lidar
This is the final version. Available on open access from Nature Research via the DOI in this record.The movements of organisms and the resultant flows of ecosystem services are strongly shaped by landscape connectivity. Studies of urban ecosystems have relied on two-dimensional (2D) measures of greenspace structure to calculate connectivity. It is now possible to explore three-dimensional (3D) connectivity in urban vegetation using waveform lidar technology that measures the full 3D structure of the canopy. Making use of this technology, here we evaluate urban greenspace 3D connectivity, taking into account the full vertical stratification of the vegetation. Using three towns in southern England, UK, all with varying greenspace structures, we describe and compare the structural and functional connectivity using both traditional 2D greenspace models and waveform lidar-generated vegetation strata (namely, grass, shrubs and trees). Measures of connectivity derived from 3D greenspace are lower than those derived from 2D models, as the latter assumes that all vertical vegetation strata are connected, which is rarely true. Fragmented landscapes that have more complex 3D vegetation showed greater functional connectivity and we found highest 2D to 3D functional connectivity biases for short dispersal capacities of organisms (6 m to 16 m). These findings are particularly pertinent in urban systems where the distribution of greenspace is critical for delivery of ecosystem services.This work was funded under the NERC Biodiversity and Ecosystem Services Sustainability (BESS) thematic programme for the ‘Fragments Functions and Flows in Urban Ecosystems’ project (Reference: NE/J015237/1; http://bess-urban.group.shef.ac.uk/). The waveform ALS data were acquired by the NERC Airborne Research and Survey Facility (ARSF) and the team from the ARSF Data Analysis Node at Plymouth Marine Laboratory is acknowledged for undertaking initial ALS processing
Changing Bee and Hoverfly Pollinator Assemblages along an Urban-Rural Gradient
The potential for reduced pollination ecosystem service due to global declines of bees and other pollinators is cause for considerable concern. Habitat degradation, destruction and fragmentation due to agricultural intensification have historically been the main causes of this pollinator decline. However, despite increasing and accelerating levels of global urbanization, very little research has investigated the effects of urbanization on pollinator assemblages. We assessed changes in the diversity, abundance and species composition of bee and hoverfly pollinator assemblages in urban, suburban, and rural sites across a UK city.Bees and hoverflies were trapped and netted at 24 sites of similar habitat character (churchyards and cemeteries) that varied in position along a gradient of urbanization. Local habitat quality (altitude, shelter from wind, diversity and abundance of flowers), and the broader-scale degree of urbanization (e.g. percentage of built landscape and gardens within 100 m, 250 m, 500 m, 1 km, and 2.5 km of the site) were assessed for each study site. The diversity and abundance of pollinators were both significantly negatively associated with higher levels of urbanization. Assemblage composition changed along the urbanization gradient with some species positively associated with urban and suburban land-use, but more species negatively so. Pollinator assemblages were positively affected by good site habitat quality, in particular the availability of flowering plants.Our results show that urban areas can support diverse pollinator assemblages, but that this capacity is strongly affected by local habitat quality. Nonetheless, in both urban and suburban areas of the city the assemblages had fewer individuals and lower diversity than similar rural habitats. The unique development histories of different urban areas, and the difficulty of assessing mobile pollinator assemblages in just part of their range, mean that complementary studies in different cities and urban habitats are required to discover if these findings are more widely applicable
A preliminary study of individual cognitive behavior therapy for social anxiety disorder in Japanese clinical settings: a single-arm, uncontrolled trial
Review article: Thirty years of analysing and modelling avian habitat relationships using satellite imagery data: a review
Design and evaluation of railway corridors based on spatial ecological and geological criteria
Transport infrastructure is closely linked to several sustainability issues of main policy relevance, and significant impacts on biodiversity as well as resource use and construction costs relate to the corridor design and location in the landscape. The aim of this study was to develop methods for railway corridor planning, in which corridor design and location would be based on important ecological and geological sustainability criteria. The method, an MCA framework including both spatial and non-spatial MCA, was demonstrated on a railway planning proposition in an urbanising area north of Stockholm, Sweden. Alternative spatial alignments for 6 railway corridors were derived based on criteria representing biodiversity, resource efficiency and costs, developed from ecological and geological knowledge, data and models. The method identified a study area specific positive synergy between ecological and geological sustainability criteria. The evaluation part of the methodology could furthermore identify uncertainties in the input data and assumptions and conflicts between ecological criteria. In order to arrive at a well-informed decision support system, the criteria as well as the decision rules employed could be further elaborated. Other relevant sustainability issues would also need to be integrated, such as cultural landscapes, recreation, and other ecosystem services. Still, arriving at a corridor design informed by the ecological and geological conditions in the planned area, as demonstrated by this study, could improve the sustainability performance of transport infrastructure planning.</p
Comparison of methods for predicting regolith thickness in previously glaciated terrain, Stockholm, Sweden
Knowledge about regolith thickness is important in several civil and environmental engineering fields. However, subsurface characteristics such as regolith thickness are difficult to determine through surface investigations and maps at regional scales. This paper presents four methods for estimating regolith thickness in a GIS environment for previously glaciated terrain with high frequency of rock outcrops: linear regression (LR) using topographical covariates; inverse distance weighting (IOW) interpolation of regolith thickness point data from well drillings: a trigonometrical approach (TA) developed for this study which uses outcrop slopes and distance between outcrops; and a simplified regolith model (SRM). The SRM is a model modified from TA which estimates the regolith thickness based on outcrops, slopes and the distance to outcrops in eight directions. The methods were compared for three study areas (Tyreso, Vallentuna and Osteraker) in Stockholm County, Sweden. Based on the results in this paper, LR proved to be the most accurate method for regolith thickness estimation, measured through root mean square error values. Whereas IDW was the most accurate method in terms of error within 2 m, which would make it a suitable model if and when large datasets of regolith point data are available. When drilling data is scarce then both the TA and SRM methods can be used for regolith estimations. However, the SRM proved to be a more accurate regolith thickness model compared to TA. SRM shows promising results and could be used at a preliminary stage in engineering projects where little or no data is available prior to detailed field investigations in previously glaciated terrain.</p
Trade-offs and synergies among ecosystem services under different forest management scenarios – The LEcA tool
Forests provide a multitude of ecosystem services. In Sweden, the goal to replace fossil fuels could induce substantial changes in the current management and use of forests. Therefore, methods and tools are needed to assess synergies and trade-offs between ecosystem services for policy and planning alternatives. The aim of this study was to develop methods for integrated sustainability assessment of forest management strategies for long-term provisioning of various ecosystem services. For this purpose, the Landscape simulation and Ecological Assessment (LEcA) tool was developed to analyse synergies and trade-offs among five ecosystem services: bioenergy feedstock and industrial wood production, forest carbon storage, recreation areas and habitat networks. Forest growth and management were simulated for two scenarios; the EAF-tot scenario dominated by even-aged forestry (EAF), and the CCF-int scenario with a combination of continuous-cover forestry (CCF) and intensified EAF. The results showed trade-offs between industrial wood and bioenergy production on one side and habitat, recreation and carbon storage on the other side. The LEcA tool showed great potential for evaluation of impacts of alternative policies for land zoning and forest management on forest ecosystem services. It can be used to assess the consequences of forest management strategies related to renewable energy and conservation policies
