2,834 research outputs found
The Gluonic Field of a Heavy Quark in Conformal Field Theories at Strong Coupling
We determine the gluonic field configuration sourced by a heavy quark
undergoing arbitrary motion in N=4 super-Yang-Mills at strong coupling and
large number of colors. More specifically, we compute the expectation value of
the operator tr[F^2+...] in the presence of such a quark, by means of the
AdS/CFT correspondence. Our results for this observable show that signals
propagate without temporal broadening, just as was found for the expectation
value of the energy density in recent work by Hatta et al. We attempt to shed
some additional light on the origin of this feature, and propose a different
interpretation for its physical significance. As an application of our general
results, we examine when the quark undergoes oscillatory motion,
uniform circular motion, and uniform acceleration. Via the AdS/CFT
correspondence, all of our results are pertinent to any conformal field theory
in 3+1 dimensions with a dual gravity formulation.Comment: 1+38 pages, 16 eps figures; v2: completed affiliation; v3: corrected
typo, version to appear in JHE
On the Beaming of Gluonic Fields at Strong Coupling
We examine the conditions for beaming of the gluonic field sourced by a heavy
quark in strongly-coupled conformal field theories, using the AdS/CFT
correspondence. Previous works have found that, contrary to naive expectations,
it is possible to set up collimated beams of gluonic radiation despite the
strong coupling. We show that, on the gravity side of the correspondence, this
follows directly (for arbitrary quark motion, and independently of any
approximations) from the fact that the string dual to the quark remains
unexpectedly close to the AdS boundary whenever the quark moves
ultra-relativistically. We also work out the validity conditions for a related
approximation scheme that proposed to explain the beaming effect though the
formation of shock waves in the bulk fields emitted by the string. We find that
these conditions are fulfilled in the case of ultra-relativistic uniform
circular motion that motivated the proposal, but unfortunately do not hold for
much more general quark trajectories.Comment: 1+33 pages, 2 figure
Post-Turing Methodology: Breaking the Wall on the Way to Artificial General Intelligence
This article offers comprehensive criticism of the Turing test and develops quality criteria for new artificial general intelligence (AGI) assessment tests. It is shown that the prerequisites A. Turing drew upon when reducing personality and human consciousness to “suitable branches of thought” re-flected the engineering level of his time. In fact, the Turing “imitation game” employed only symbolic communication and ignored the physical world. This paper suggests that by restricting thinking ability to symbolic systems alone Turing unknowingly constructed “the wall” that excludes any possi-bility of transition from a complex observable phenomenon to an abstract image or concept. It is, therefore, sensible to factor in new requirements for AI (artificial intelligence) maturity assessment when approaching the Tu-ring test. Such AI must support all forms of communication with a human being, and it should be able to comprehend abstract images and specify con-cepts as well as participate in social practices
Early-Time Energy Loss in a Strongly-Coupled SYM Plasma
We carry out an analytic study of the early-time motion of a quark in a
strongly-coupled maximally-supersymmetric Yang-Mills plasma, using the AdS/CFT
correspondence. Our approach extracts the first thermal effects as a small
perturbation of the known quark dynamics in vacuum, using a double expansion
that is valid for early times and for (moderately) ultrarelativistic quark
velocities. The quark is found to lose energy at a rate that differs
significantly from the previously derived stationary/late-time result: it
scales like T^4 instead of T^2, and is associated with a friction coefficient
that is not independent of the quark momentum. Under conditions representative
of the quark-gluon plasma as obtained at RHIC, the early energy loss rate is a
few times smaller than its late-time counterpart. Our analysis additionally
leads to thermally-corrected expressions for the intrinsic energy and momentum
of the quark, in which the previously discovered limiting velocity of the quark
is found to appear naturally.Comment: 39 pages, no figures. v2: Minor corrections and clarifications.
References added. Version to be published in JHE
Holographic phase diagram of quark-gluon plasma formed in heavy-ions collisions
The phase diagram of quark gluon plasma (QGP) formed at a very early stage
just after the heavy ion collision is obtained by using a holographic dual
model for the heavy ion collision. In this dual model colliding ions are
described by the charged shock gravitational waves. Points on the phase diagram
correspond to the QGP or hadronic matter with given temperatures and chemical
potentials. The phase of QGP in dual terms is related to the case when the
collision of shock waves leads to formation of trapped surface. Hadronic matter
and other confined states correspond to the absence of trapped surface after
collision.
Multiplicity of the ion collision process is estimated in the dual language
as area of the trapped surface. We show that a non-zero chemical potential
reduces the multiplicity. To plot the phase diagram we use two different dual
models of colliding ions, the point and the wall shock waves, and find
qualitative agreement of the results.Comment: 33 pages, 14 figures, typos correcte
Selection for Replicases in Protocells
PMCID: PMC3649988This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
The influence of the frequency of periodic disturbances on the maintenance of phytoplankton diversity
The influence of periodic disturbances of various frequency on the maintenance of the phytoplankton diversity was studied by semicontinuous competition experiments. Disturbances consisted of dilution events, which meant both addition of fresh nutrients and elimination of organisms. The intervals between dilution events varied from 1 to 14 days. Diversity was found to increase with increasing intervals between disturbances. coexisting species belonged to different strategy types: (a) species with rapid growth under enriched conditions, (b) species with good competitive abilities under impoverished conditions, (c) species with the ability to build up storage pools of the limiting nutrient. An increase of the number of coexisting species over the number that would have coexisted in steady state was only found when the interval exceeded one generation time
On Field Theory Thermalization from Gravitational Collapse
Motivated by its field theory interpretation, we study gravitational collapse
of a minimally coupled massless scalar field in Einstein gravity with a
negative cosmological constant. After demonstrating the accuracy of the
numerical algorithm for the questions we are interested in, we investigate
various aspects of the apparent horizon formation. In particular, we study the
time and radius of the apparent horizon formed as functions of the initial
Gaussian profile for the scalar field. We comment on several aspects of the
dual field theory picture.Comment: 31 pages, 17 figures; V2 Some figures corrected, minor revision.
arXiv admin note: substantial text overlap with arXiv:1106.233
Three-dimensional localization of ultracold atoms in an optical disordered potential
We report a study of three-dimensional (3D) localization of ultracold atoms
suspended against gravity, and released in a 3D optical disordered potential
with short correlation lengths in all directions. We observe density profiles
composed of a steady localized part and a diffusive part. Our observations are
compatible with the self-consistent theory of Anderson localization, taking
into account the specific features of the experiment, and in particular the
broad energy distribution of the atoms placed in the disordered potential. The
localization we observe cannot be interpreted as trapping of particles with
energy below the classical percolation threshold.Comment: published in Nature Physics; The present version is the initial
manuscript (unchanged compared to version 1); The published version is
available online at
http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys2256.htm
Holographic GB gravity in arbitrary dimensions
We study the properties of the holographic CFT dual to Gauss-Bonnet gravity
in general dimensions. We establish the AdS/CFT dictionary and in
particular relate the couplings of the gravitational theory to the universal
couplings arising in correlators of the stress tensor of the dual CFT. This
allows us to examine constraints on the gravitational couplings by demanding
consistency of the CFT. In particular, one can demand positive energy fluxes in
scattering processes or the causal propagation of fluctuations. We also examine
the holographic hydrodynamics, commenting on the shear viscosity as well as the
relaxation time. The latter allows us to consider causality constraints arising
from the second-order truncated theory of hydrodynamics.Comment: 48 pages, 9 figures. v2: New discussion on free fields in subsection
3.3 and new appendix B on conformal tensor fields. Added comments on the
relation between the central charge appearing in the two-point function and
the "central charge" characterizing the entropy density in the discussion.
References adde
- …
