6,388 research outputs found
Realization of the Three-dimensional Quantum Euclidean Space by Differential Operators
The three-dimensional quantum Euclidean space is an example of a
non-commutative space that is obtained from Euclidean space by -deformation.
Simultaneously, angular momentum is deformed to , it acts on the
-Euclidean space that becomes a -module algebra this way. In this
paper it is shown, that this algebra can be realized by differential operators
acting on functions on . On a factorspace of
a scalar product can be defined that leads to a
Hilbert space, such that the action of the differential operators is defined on
a dense set in this Hilbert space and algebraically self-adjoint becomes
self-adjoint for the linear operator in the Hilbert space. The self-adjoint
coordinates have discrete eigenvalues, the spectrum can be considered as a
-lattice.Comment: 13 pages, late
Three approaches towards Floer homology of cotangent bundles
Consider the cotangent bundle of a closed Riemannian manifold and an almost
complex structure close to the one induced by the Riemannian metric. For
Hamiltonians which grow for instance quadratically in the fibers outside of a
compact set, one can define Floer homology and show that it is naturally
isomorphic to singular homology of the free loop space. We review the three
isomorphisms constructed by Viterbo (1996), Salamon-Weber (2003) and
Abbondandolo-Schwarz (2004).
The theory is illustrated by calculating Morse and Floer homology in case of
the euclidean n-torus. Applications include existence of noncontractible
periodic orbits of compactly supported Hamiltonians on open unit disc cotangent
bundles which are sufficiently large over the zero section.Comment: 30 pages, 6 figures. To appear in J. Symplectic Geom. (Stare Jablonki
conference issue
Verzeichniß des Lehrer-Personals und der sämmtlichen Studirenden an der königl. Ludwig-Maximilians-Universität München im Sommer-Semester des Studienjahres 1846/47
Verzeichniß des Lehrer-Personals und der sämmtlichen Studirenden an der k. Ludwig-Maximilians-Universität München in den beiden Semestern des Studienjahres 1836/37
The Geometry of a -Deformed Phase Space
The geometry of the -deformed line is studied. A real differential
calculus is introduced and the associated algebra of forms represented on a
Hilbert space. It is found that there is a natural metric with an associated
linear connection which is of zero curvature. The metric, which is formally
defined in terms of differential forms, is in this simple case identifiable as
an observable.Comment: latex file, 26 pp, a typing error correcte
Verzeichniß des Lehrer-Personals und der sämmtlichen Studirenden an der k. Ludwig-Maximilians-Universität in München im Studien-Jahre 1832/33
Verzeichniß des Lehrer-Personals und der sämmtlichen Studirenden an der königl. Ludwig-Maximilians-Universität München in den beiden Semestern des Studienjahres 1844/45
Alphabetisches Verzeichniß der sämmtlichen Studirenden an der k. Ludwig-Maximilians-Universität zu München im Winter-Semester 1829/30 mit Angabe ihrer Heimath, Studien und Wohnungen
- …
