4,997 research outputs found
Some Aspects of Measurement Error in Linear Regression of Astronomical Data
I describe a Bayesian method to account for measurement errors in linear
regression of astronomical data. The method allows for heteroscedastic and
possibly correlated measurement errors, and intrinsic scatter in the regression
relationship. The method is based on deriving a likelihood function for the
measured data, and I focus on the case when the intrinsic distribution of the
independent variables can be approximated using a mixture of Gaussians. I
generalize the method to incorporate multiple independent variables,
non-detections, and selection effects (e.g., Malmquist bias). A Gibbs sampler
is described for simulating random draws from the probability distribution of
the parameters, given the observed data. I use simulation to compare the method
with other common estimators. The simulations illustrate that the Gaussian
mixture model outperforms other common estimators and can effectively give
constraints on the regression parameters, even when the measurement errors
dominate the observed scatter, source detection fraction is low, or the
intrinsic distribution of the independent variables is not a mixture of
Gaussians. I conclude by using this method to fit the X-ray spectral slope as a
function of Eddington ratio using a sample of 39 z < 0.8 radio-quiet quasars. I
confirm the correlation seen by other authors between the radio-quiet quasar
X-ray spectral slope and the Eddington ratio, where the X-ray spectral slope
softens as the Eddington ratio increases.Comment: 39 pages, 11 figures, 1 table, accepted by ApJ. IDL routines
(linmix_err.pro) for performing the Markov Chain Monte Carlo are available at
the IDL astronomy user's library, http://idlastro.gsfc.nasa.gov/homepage.htm
Designing a Belief Function-Based Accessibility Indicator to Improve Web Browsing for Disabled People
The purpose of this study is to provide an accessibility measure of
web-pages, in order to draw disabled users to the pages that have been designed
to be ac-cessible to them. Our approach is based on the theory of belief
functions, using data which are supplied by reports produced by automatic web
content assessors that test the validity of criteria defined by the WCAG 2.0
guidelines proposed by the World Wide Web Consortium (W3C) organization. These
tools detect errors with gradual degrees of certainty and their results do not
always converge. For these reasons, to fuse information coming from the
reports, we choose to use an information fusion framework which can take into
account the uncertainty and imprecision of infor-mation as well as divergences
between sources. Our accessibility indicator covers four categories of
deficiencies. To validate the theoretical approach in this context, we propose
an evaluation completed on a corpus of 100 most visited French news websites,
and 2 evaluation tools. The results obtained illustrate the interest of our
accessibility indicator
Condition monitoring of an advanced gas-cooled nuclear reactor core
A critical component of an advanced gas-cooled reactor station is the graphite core. As a station ages, the graphite bricks that comprise the core can distort and may eventually crack. Since the core cannot be replaced, the core integrity ultimately determines the station life. Monitoring these distortions is usually restricted to the routine outages, which occur every few years, as this is the only time that the reactor core can be accessed by external sensing equipment. This paper presents a monitoring module based on model-based techniques using measurements obtained during the refuelling process. A fault detection and isolation filter based on unknown input observer techniques is developed. The role of this filter is to estimate the friction force produced by the interaction between the wall of the fuel channel and the fuel assembly supporting brushes. This allows an estimate to be made of the shape of the graphite bricks that comprise the core and, therefore, to monitor any distortion on them
Proximal humeral fractures with a severe varus deformity treated by fixation with a locking plate
The Weibull-Geometric distribution
In this paper we introduce, for the first time, the Weibull-Geometric
distribution which generalizes the exponential-geometric distribution proposed
by Adamidis and Loukas (1998). The hazard function of the last distribution is
monotone decreasing but the hazard function of the new distribution can take
more general forms. Unlike the Weibull distribution, the proposed distribution
is useful for modeling unimodal failure rates. We derive the cumulative
distribution and hazard functions, the density of the order statistics and
calculate expressions for its moments and for the moments of the order
statistics. We give expressions for the R\'enyi and Shannon entropies. The
maximum likelihood estimation procedure is discussed and an algorithm EM
(Dempster et al., 1977; McLachlan and Krishnan, 1997) is provided for
estimating the parameters. We obtain the information matrix and discuss
inference. Applications to real data sets are given to show the flexibility and
potentiality of the proposed distribution
Reconstruction of photon statistics using low performance photon counters
The output of a photodetector consists of a current pulse whose charge has
the statistical distribution of the actual photon numbers convolved with a
Bernoulli distribution. Photodetectors are characterized by a nonunit quantum
efficiency, i.e. not all the photons lead to a charge, and by a finite
resolution, i.e. a different number of detected photons leads to a
discriminable values of the charge only up to a maximum value. We present a
detailed comparison, based on Monte Carlo simulated experiments and real data,
among the performances of detectors with different upper limits of counting
capability. In our scheme the inversion of Bernoulli convolution is performed
by maximum-likelihood methods assisted by measurements taken at different
quantum efficiencies. We show that detectors that are only able to discriminate
between zero, one and more than one detected photons are generally enough to
provide a reliable reconstruction of the photon statistics for single-peaked
distributions, while detectors with higher resolution limits do not lead to
further improvements. In addition, we demonstrate that, for semiclassical
states, even on/off detectors are enough to provide a good reconstruction.
Finally, we show that a reliable reconstruction of multi-peaked distributions
requires either higher quantum efficiency or better capability in
discriminating high number of detected photons.Comment: 8 pages, 3 figure
A population-based approach to background discrimination in particle physics
Background properties in experimental particle physics are typically
estimated using control samples corresponding to large numbers of events. This
can provide precise knowledge of average background distributions, but
typically does not consider the effect of fluctuations in a data set of
interest. A novel approach based on mixture model decomposition is presented as
a way to estimate the effect of fluctuations on the shapes of probability
distributions in a given data set, with a view to improving on the knowledge of
background distributions obtained from control samples. Events are treated as
heterogeneous populations comprising particles originating from different
processes, and individual particles are mapped to a process of interest on a
probabilistic basis. The proposed approach makes it possible to extract from
the data information about the effect of fluctuations that would otherwise be
lost using traditional methods based on high-statistics control samples. A
feasibility study on Monte Carlo is presented, together with a comparison with
existing techniques. Finally, the prospects for the development of tools for
intensive offline analysis of individual events at the Large Hadron Collider
are discussed.Comment: Updated according to the version published in J. Phys.: Conf. Ser.
Minor changes have been made to the text with respect to the published
article with a view to improving readabilit
Application of Monte Carlo Algorithms to the Bayesian Analysis of the Cosmic Microwave Background
Power spectrum estimation and evaluation of associated errors in the presence
of incomplete sky coverage; non-homogeneous, correlated instrumental noise; and
foreground emission is a problem of central importance for the extraction of
cosmological information from the cosmic microwave background. We develop a
Monte Carlo approach for the maximum likelihood estimation of the power
spectrum. The method is based on an identity for the Bayesian posterior as a
marginalization over unknowns. Maximization of the posterior involves the
computation of expectation values as a sample average from maps of the cosmic
microwave background and foregrounds given some current estimate of the power
spectrum or cosmological model, and some assumed statistical characterization
of the foregrounds. Maps of the CMB are sampled by a linear transform of a
Gaussian white noise process, implemented numerically with conjugate gradient
descent. For time series data with N_{t} samples, and N pixels on the sphere,
the method has a computational expense $KO[N^{2} +- N_{t} +AFw-log N_{t}],
where K is a prefactor determined by the convergence rate of conjugate gradient
descent. Preconditioners for conjugate gradient descent are given for scans
close to great circle paths, and the method allows partial sky coverage for
these cases by numerically marginalizing over the unobserved, or removed,
region.Comment: submitted to Ap
C1 inhibitor deficiency: 2014 United Kingdom consensus document
C1 inhibitor deficiency is a rare disorder manifesting with recurrent attacks of disabling and potentially life-threatening angioedema. Here we present an updated 2014 United Kingdom consensus document for the management of C1 inhibitor-deficient patients, representing a joint venture between the United Kingdom Primary Immunodeficiency Network and Hereditary Angioedema UK. To develop the consensus, we assembled a multi-disciplinary steering group of clinicians, nurses and a patient representative. This steering group first met in 2012, developing a total of 48 recommendations across 11 themes. The statements were distributed to relevant clinicians and a representative group of patients to be scored for agreement on a Likert scale. All 48 statements achieved a high degree of consensus, indicating strong alignment of opinion. The recommendations have evolved significantly since the 2005 document, with particularly notable developments including an improved evidence base to guide dosing and indications for acute treatment, greater emphasis on home therapy for acute attacks and a strong focus on service organisation. This article is protected by copyright. All rights reserved
- …
