290 research outputs found

    The Influence of Geometrical Shape Changes on Wave Overtopping: a Laboratory and SPH Numerical Study

    Get PDF
    This paper presents laboratory investigations of four “retrofit” suggestions for attenuating the overtopping from vertical seawall. Two-dimensional physical model experiments were performed on a vertical seawall with a 1:20 sloping foreshore. Additionally, a Lagrangian, particle based SPH methodology was employed to simulate the wave hydrodynamics and overtopping for the recurve configuration. The experimental and numerical results confirm satisfactory performance. For the tested configurations in the laboratory, the mean overtopping discharges decreased over 60% and maximum individual discharge decreased 40% on recurve wall under both impulsive and non-impulsive conditions. A significant reduction was also observed in mitigating overtopping discharge by using model vegetation and reef breakwater, while diffraction pillar was not found satisfactory

    Application of smoothed particle hydrodynamics in evaluating the performance of coastal retrofit structures

    Get PDF
    This study develops an accurate numerical tool for investigating optimal retrofit configurations in order to minimize wave overtopping from a vertical seawall due to extreme climatic events and under changing climate. A weakly compressible smoothed particle hydrodynamics (WCSPH) model is developed to simulate the wave-structure interactions for coastal retrofit structures in front of a vertical seawall. A range of possible physical configurations of coastal retrofits including re-curve wall and submerged breakwater are modelled with the numerical model to understand their performance under different wave and structural conditions. The numerical model is successfully validated against laboratory data collected in 2D wave flume at Warwick Water Laboratory. The findings of numerical modelling are in good agreement with the laboratory data. The results indicate that recurve wall is more effective in mitigating wave overtopping and provides more resilience to coastal flooding in comparison to base-case (plain vertical wall) and submerged breakwater retrofit

    Longitudinal dispersion of microplastics in aquatic flows using fluorometric techniques

    Get PDF
    Microplastics are an emerging environmental contaminant. Existing knowledge on the precise transport processes involved in the movement of microplastics in natural water bodies is limited. Microplastic fate-transport models rely on numerical simulations with limited empirical data to support and validate these models. We adopted fluorometric principles to track the movement of both fluorescent dye and florescent stained microplastics (polyethylene) in purpose-built laboratory flumes with standard fibre-optic fluorometers. Neutrally buoyant microplastics behaved in the same manner as a solute (Rhodamine) and more importantly displayed classical fundamental dispersion theory in uniform open channel flow. This suggests Rhodamine, a fluorescent tracer, can be released into the natural environment with the potential to mimic microplastic movement in the water column

    Experimental study on the high-velocity impact behavior of sandwich structures with an emphasis on the layering effects of foam core

    Get PDF
    In this study, the effects of the core layering of sandwich structures, as well as arrangements of these layers on the ballistic resistance of the structures under high-velocity impact, were investigated. Sandwich structures consist of aluminum face-sheets (AL-1050) and polyurethane foam core with different densities. Three sandwich structures with a single-layer core of different core densities and four sandwich structures with a four-layer core of different layers arrangements were constructed. Cylindrical steel projectiles with hemispherical nose, 8 mm diameter and 20 mm length were used. The projectile impact velocity range was chosen from 180 to 320 m/s. Considering constant mass and total thickness for the core, the results of the study showed that the core layering increases the ballistic limit velocity of the sandwich structures. The ballistic limit velocity of the panels with a four-layer core of different arrangements, compared to the panel with the single-layer core, is higher from 5% to 8%. Also, for the single-layer core structure, by increasing the core density, the ballistic limit velocity was increased. Different failure mechanisms such as plugging, petaling and dishing occurred for the back face-sheet. The dishing area diameter of back face-sheets was proportional to the ballistic resistance of each sandwich structure

    The merger that led to the formation of the Milky Way's inner stellar halo and thick disk

    Get PDF
    The assembly process of our Galaxy can be retrieved using the motions and chemistry of individual stars. Chemo-dynamical studies of the nearby halo have long hinted at the presence of multiple components such as streams, clumps, duality and correlations between the stars' chemical abundances and orbital parameters. More recently, the analysis of two large stellar surveys have revealed the presence of a well-populated chemical elemental abundance sequence, of two distinct sequences in the colour-magnitude diagram, and of a prominent slightly retrograde kinematic structure all in the nearby halo, which may trace an important accretion event experienced by the Galaxy. Here report an analysis of the kinematics, chemistry, age and spatial distribution of stars in a relatively large volume around the Sun that are mainly linked to two major Galactic components, the thick disk and the stellar halo. We demonstrate that the inner halo is dominated by debris from an object which at infall was slightly more massive than the Small Magellanic Cloud, and which we refer to as Gaia-Enceladus. The stars originating in Gaia-Enceladus cover nearly the full sky, their motions reveal the presence of streams and slightly retrograde and elongated trajectories. Hundreds of RR Lyrae stars and thirteen globular clusters following a consistent age-metallicity relation can be associated to Gaia-Enceladus on the basis of their orbits. With an estimated 4:1 mass-ratio, the merger with Gaia-Enceladus must have led to the dynamical heating of the precursor of the Galactic thick disk and therefore contributed to the formation of this component approximately 10 Gyr ago. These findings are in line with simulations of galaxy formation, which predict that the inner stellar halo should be dominated by debris from just a few massive progenitors.Comment: 19 pages, 8 figures. Published in Nature in the issue of Nov. 1st, 2018. This is the authors' version before final edit

    Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj

    Get PDF
    The Type~Ia supernova (SN~Ia) 2016coj in NGC 4125 (redshift z=0.004523z=0.004523) was discovered by the Lick Observatory Supernova Search 4.9 days after the fitted first-light time (FFLT; 11.1 days before BB-band maximum). Our first detection (pre-discovery) is merely 0.6±0.50.6\pm0.5 day after the FFLT, making SN 2016coj one of the earliest known detections of a SN Ia. A spectrum was taken only 3.7 hr after discovery (5.0 days after the FFLT) and classified as a normal SN Ia. We performed high-quality photometry, low- and high-resolution spectroscopy, and spectropolarimetry, finding that SN 2016coj is a spectroscopically normal SN Ia, but with a high velocity of \ion{Si}{2} λ\lambda6355 (12,600\sim 12,600\,\kms\ around peak brightness). The \ion{Si}{2} λ\lambda6355 velocity evolution can be well fit by a broken-power-law function for up to a month after the FFLT. SN 2016coj has a normal peak luminosity (MB18.9±0.2M_B \approx -18.9 \pm 0.2 mag), and it reaches a BB-band maximum \about16.0~d after the FFLT. We estimate there to be low host-galaxy extinction based on the absence of Na~I~D absorption lines in our low- and high-resolution spectra. The spectropolarimetric data exhibit weak polarization in the continuum, but the \ion{Si}{2} line polarization is quite strong (0.9%±0.1%\sim 0.9\% \pm 0.1\%) at peak brightness.Comment: Submitte

    The Effect of Cognitive–Behavioral Group Therapy on Menopausal Symptoms

    Get PDF
    BACKGROUND AND OBJECTIVE: The common symptoms of menopause are associated with anxiety and discomfort for most women, and this is one of the major healthcare challenges. The aim of this study was to evaluate the effect of cognitive – behavioral group therapy on menopausal symptoms (primary outcome). METHODS: This randomized controlled clinical trial was conducted among 90 menopausal women with health records at two health centers in Tuyserkan in 2016 and were randomly assigned to two groups of intervention and control (45 patients in each group). To perform cognitive – behavioral group therapy, six 90-minute sessions were held for the intervention group for six consecutive weeks. Menopausal symptoms were discussed in each of these sessions based on cognitive techniques such as identifying negative automatic thoughts and behavioral techniques such as diaphragmatic breathing technique. Menopausal symptoms were assessed in both groups using the Greene Climacteric Scale (0 – 63) before the intervention and at the end of the sixth week. To adhere to ethics, the control group received one session of educational counseling after the assessments were done. FINDINGS: There was no statistically significant difference in mean total Greene score between the cognitive– behavioral group (22.78±12.22) and control group (24.8±10.25) before intervention. After the intervention, the mean total Greene score decreased significantly in the cognitive – behavioral group (15.75±7.24) compared to the control group (24.97±9.25) (p < 0.05). CONCLUSION: The results showed that cognitive – behavioral group therapy can decrease menopausal symptoms

    Improved prediction of wave overtopping rates at vertical seawalls with recurve retrofitting

    Get PDF
    This study investigates the reduction in overtopping discharge along a vertical seawall through the implementation of a recurve retrofitting. A comprehensive set of physical modelling experiments were undertaken in a laboratory-scale wave flume at the University of Warwick, to investigate the wave overtopping processes under both swell and storm wave conditions. The tests measured overtopping discharges for impulsive and non-impulsive wave conditions. The effects of geometrical design of recurve retrofitting on overtopping reduction are examined by four configurations with varying overhang length and recurve hight. The study revealed that the reduction in overtopping is primarily determined by the length of the overhang in the recurve wall, while the influence of the recurve height is limited. A longer overhang length results in a more substantial decrease in overtopping discharges on the seawall crest. The results also highlight the role of incident wave steepness and the crest freeboard on the overtopping mitigation performance of the recurve walls. A new enhanced methodology is proposed to predict the wave overtopping from vertical seawalls with recurve retrofitting., considering the effects of freeboard and wave steepness. The findings of this study provide new important insight in the role of retrofitting as a robust intervention to improve the wave overtopping mitigation performance of seawalls. The predictive empirical formulae proposed by this study facilitate readily and accurate estimation of overtopping rates as a function of retrofitting geometrical design, allowing for wider application of retrofitting solutions

    Efficient data-driven machine learning models for scour depth predictions at sloping sea defences

    Get PDF
    Seawalls are critical defence infrastructures in coastal zones that protect hinterland areas from storm surges, wave overtopping and soil erosion hazards. Scouring at the toe of sea defences, caused by wave-induced accretion and erosion of bed material imposes a significant threat to the structural integrity of coastal infrastructures. Accurate prediction of scour depths is essential for appropriate and efficient design and maintenance of coastal structures, which serve to mitigate risks of structural failure through toe scouring. However, limited guidance and predictive tools are available for estimating toe scouring at sloping structures. In recent years, Artificial Intelligence and Machine Learning (ML) algorithms have gained interest, and although they underpin robust predictive models for many coastal engineering applications, such models have yet to be applied to scour prediction. Here we develop and present ML-based models for predicting toe scour depths at sloping seawall. Four ML algorithms, namely, Random Forest (RF), Gradient Boosted Decision Trees (GBDT), Artificial Neural Networks (ANNs), and Support Vector Machine Regression (SVMR) are utilised. Comprehensive physical modelling measurement data is utilised to develop and validate the predictive models. A Novel framework for feature selection, feature importance, and hyperparameter tuning algorithms are adopted for pre- and post-processing steps of ML-based models. In-depth statistical analyses are proposed to evaluate the predictive performance of the proposed models. The results indicate a minimum of 80% prediction accuracy across all the algorithms tested in this study and overall, the SVMR produced the most accurate predictions with a Coefficient of Determination (r2) of 0.74 and a Mean Absolute Error (MAE) value of 0.17. The SVMR algorithm also offered most computationally efficient performance among the algorithms tested. The methodological framework proposed in this study can be applied to scouring datasets for rapid assessment of scour at coastal defence structures, facilitating model-informed decision-making

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected
    corecore