862 research outputs found
Reliability analysis of moment redistribution in reinforced concrete beams
Design codes allow a limited amount of moment redistribution in continuous reinforced concrete beams and often make use of lower bound values in the procedure for estimating the moment redistribution factors. Here, based on the concept of demand and capacity rotation, and by means of Monte Carlo simulation, a probabilistic model is derived for the evaluation of moment redistribution factors. Results show that in all considered cases, the evaluated mean and nominal values of moment redistribution factor are greater than the values provided by the ACI code. On the other hand, the 5th percentile value of moment redistribution factor could be lower than those specified by the code. Although the reduction of strength limit state reliability index attributable to uncertainty in moment redistribution factors is not large, it is comparable to the reduction in reliability index resulting from increasing the ratio of live to dead load
Genetic diversity in Algerian maize (Zea mays L) landraces using SSR markers
In the Sahara, maize (Zea mays L) has been adapted to extreme environmental conditions during the last five centuries; therefore, this germplasm has a potential value as source of tolerance to stress. No previous report of the genetic diversity of Saharan maize has been published so far. The objective of this study was to determine the genetic diversity of a collection of Saharan maize. Fifteen accessions representing the geographic diversity of Algeria were characterized with 18 SSR. Most loci (93%) were polymorphic; the total amount of alleles was 87 and the average of alleles per locus was 5.8. The total genetic diversity (He) was 0.57, being 69% intra-accessions and 31% inter-accession. Eight of the alleles were accession-specific and belonged to six populations. Genetic distance among the 15 accessions resulted in the definition of three main clusters related to the geographic origin. Maize germplasm from the Algerian Sahara can be classified at least in three groups and the most variable accessions are in the southern oasis. Some accessions were highly variable and can be sources of favorable alleles for breeding for tolerance to extreme stress conditions.This research was supported by the Spanish Agency for International Cooperation and Development (AECID project A/023430/09), the École Nationale Supérieure Agronomique (ENSA) Algiers,Algeria,the Spanish Council for Scientific Research (CSIC) and the Algerian Ministry of high Education and scientific research (MESRS).Peer reviewe
Combined effect of steel fibres and steel rebars on impact resistance of high performance concrete
The investigation on the impact properties of normal concrete (NC)and reinforced concrete (RC) specimens, steel fibre reinforced concrete (SFRC) specimens and RC+SFRC specimens with different steel fibres dosages were carried out with the drop-weight impact test recommended by ACI Committee 544. The results indicate that the number of blows to final failure greatly increased by addition of steel fibres. Moreover, the combination of steel fibres and steel rebars demonstrates a significant positive composite effect on the impact resistance, which results on the improvement in impact toughness of concrete specimens. In view of the variation of impact test results, the two-parameter Weibull distribution was adopted to analyze the experimental data. It is proved that the probabilistic distribution of the blows to first crack and to final failure of six types of samples are approximately two-parameter Weibull distribution.Funded by the National Natural Science Foundation of China (NSFC) (Grant No.50578026)Financial support provided by the Research Center of Mathematics of the University of Minho through the FCT Pluriannual Funding Progra
Flexural strengthening of RC continuous slab strips using NSM CFRP laminates
To assess the effectiveness of the near surface mounted (NSM) technique, in terms of load carrying and moment
redistribution capacities, for the flexural strengthening of continuous reinforced concrete (RC) slabs, an
experimental program was carried out. The experimental program is composed of three series of three slab strips of
two equal span length, in order to verify the possibility of increasing the negative (at the intermediate support
region) resisting bending moment in 25% and 50% and maintaining moment redistribution levels of 15%, 30% and
45%. Though the flexural resistance of the NSM strengthened sections has exceeded the target values, the moment
redistribution was relatively low, and the increase of the load carrying capacity of the strengthened slabs did not
exceed 25%. This experimental program is analyzed to highlight the possibilities of NSM technique for statically
indeterminate RC slabs in terms of flexural strengthening effectiveness, moment redistribution and ductility
performance. Using a FEM-based computer program, which predictive performance was appraised using the
obtained experimental results, a high effective NSM flexural strengthening strategy is proposed, capable of
enhancing the slab’s load carrying capacity and maintaining high levels of ductility.The study reported in this paper forms a part of the research program "CUTINEMO - Carbon fiber laminates applied according to the near surface mounted technique to increase the flexural resistance to negative moments of continuous reinforced concrete structures" supported by FCT, PTDC/ECM/73099/2006. The authors wish to acknowledge the support also provided by the S&P, Casais and Artecanter Companies. The first Author acknowledges the financial support of National Council for Scientific and Technological Development (CNPq) - Brazil, Ph.D. Grant no. 200953/2007-9. The second Author wishes to acknowledge the support provided by FCT, by means of the SFRH/BSAB/818/2008 and SFRH/BSAB/913/2009 sabbatical grants
Recommended from our members
Damage Analysis of Reinforced Concrete Structures with Substandard Detailing
The goal of this study is to investigate seismic behaviour of existing R/C buildings designed and constructed in accordance with standards that do not meet current seismic code requirements. In these structures, not only flexure, but also shear and bond-slip deformation mechanisms need to be considered, both separately and in combination. To serve this goal, a finite element model is developed for inelastic seismic analysis of complete planar R/C frames. The proposed finite element is able to capture gradual spread of inelastic flexural and shear deformations as well as their interaction in the end regions of R/C members. Additionally, it is capable of predicting shear failures caused by degradation of shear strength in the plastic hinges of R/C elements, as well as pullout failures caused by inadequate anchorage of the reinforcement in the joint regions. The finite element is fully implemented in the general inelastic finite element code IDARC2D and it is verified against experimental results involving individual column and plane frame specimens with nonductile detailing. It is shown that, in all cases, satisfactory correlation is established between the model predictions and the experimental evidence. Finally, parametric studies are conducted to illustrate the significance of each deformation mechanism on the seismic response of the specimens under investigation. It is concluded, that all deformation mechanisms, as well as their interaction, should be taken into consideration in order to predict reliably seismic damage of R/C structures with substandard detailing
Effects of Redispersible Polymer Powder on Mechanical and Durability Properties of Preplaced Aggregate Concrete with Recycled Railway Ballast
The rapid-hardening method employing the injection of calcium sulfoaluminate (CSA) cement mortar into voids between preplaced ballast aggregates has recently emerged as a promising approach for the renovation of existing ballasted railway tracks to concrete tracks. This method typically involves the use of a redispersible polymer powder to enhance the durability of the resulting recycled aggregate concrete. However, the effects of the amount of polymer on the mechanical and durability properties of recycled ballast aggregate concrete were not clearly understood. In addition, the effects of the cleanness condition of ballast aggregates were never examined. This study aimed at investigating these two aspects through compression and flexure tests, shrinkage tests, freezing-thawing resistance tests, and optical microscopy. The results revealed that an increase in the amount of polymer generally decreased the compressive strength at the curing age of 28 days. However, the use of a higher polymer ratio enhanced the modulus of rupture, freezing-thawing resistance, and shrinkage resistance, likely because it improved the microstructure of the interfacial transition zones between recycled ballast aggregates and injected mortar. In addition, a higher cleanness level of ballast aggregates generally improved the mechanical and durability qualities of concrete
Emerging Trends in Allelopathy: A Genetic Perspective for Sustainable Agriculture
Over the past decades, a growing interest in allelopathy has been recorded due to the effective use of allelochemicals as growth regulators, bioherbicides, insecticides, and antimicrobial crop protection in the sustainable agriculture field. So far, the genetic aspects of the allelopathic effects have been poorly studied, and the identification of allelopathic genes and/or genomic regions (QTLs) has become a challenge to implement specific breeding programs. Here, we review the recent genetic and genome-based research findings in allelopathy, with a particular emphasis on weed control, which is one of the major crop yield-limiting factors. We discuss the key plant–microorganism interactions, including the cross-kingdom RNAi phenomenon and the involvement of microRNAs in allelopathy. Through this review, we wanted to lay the foundation for advancing knowledge in allelopathy and uncover the areas where research is needed
Textile-reinforced mortar (TRM) versus fibre-reinforced polymers (FRP) in flexural strengthening of RC beams
The aim of this paper is to compare the flexural performance of reinforced concrete (RC) beams strengthened with textile-reinforced mortar (TRM) and fibre-reinforced polymers (FRP). The investigated parameters included the strengthening material, namely TRM or FRP; the number of TRM/FRP layers; the textile surface condition (coated and uncoated); the textile fibre material (carbon, coated basalt or glass fibres); and the end-anchorage system of the external reinforcement. Thirteen RC beams were fabricated, strengthened and tested in four-point bending. One beam served as control specimen, seven beams strengthened with TRM, and five with FRP. It was mainly found that: (a) TRM was generally inferior to FRP in enhancing the flexural capacity of RC beams, with the effectiveness ratio between the two systems varying from 0.46 to 0.80, depending on the parameters examined, (b) by tripling the number of TRM layers (from one to three), the TRM versus FRP effectiveness ratio was almost doubled, (c) providing coating to the dry textile enhanced the TRM effectiveness and altered the failure mode; (d) different textile materials, having approximately same axial stiffness, resulted in different flexural capacity increases; and (e) providing end-anchorage had a limited effect on the performance of TRM-retrofitted beams. Finally, a simple formula proposed by fib Model Code 2010 for FRP reinforcement was used to predict the mean debonding stress developed in the TRM reinforcement. It was found that this formula is in a good agreement with the average stress calculated based on the experimental results when failure was similar to FRP-strengthened beams
Neural network modelling of RC deep beam shear strength
YesA 9 x 18 x 1 feed-forward neural network (NN) model
trained using a resilient back-propagation algorithm and
early stopping technique is constructed to predict the
shear strength of deep reinforced concrete beams. The
input layer covering geometrical and material properties
of deep beams has nine neurons, and the corresponding output is the shear strength. Training, validation and testing of the developed neural network have been
achieved using a comprehensive database compiled from
362 simple and 71 continuous deep beam specimens.
The shear strength predictions of deep beams obtained
from the developed NN are in better agreement with
test results than those determined from strut-and-tie
models. The mean and standard deviation of the ratio between predicted capacities using the NN and measured shear capacities are 1.028 and 0.154, respectively, for simple deep beams, and 1.0 and 0.122, respectively, for continuous deep beams. In addition, the
trends ascertained from parametric study using the developed NN have a consistent agreement with those observed in other experimental and analytical investigations
Establishment of performance-based seismic design factors for precast concrete floor diaphragms
This paper presents an analytical study used to establish design factors for a new seismic design methodology for precast concrete floor diaphragms. The design factors include diaphragm force amplification factors Ψ and diaphragm shear overstrength factors Ωv
- …
