48 research outputs found

    A Very Low Resource Language Speech Corpus for Computational Language Documentation Experiments

    Full text link
    Most speech and language technologies are trained with massive amounts of speech and text information. However, most of the world languages do not have such resources or stable orthography. Systems constructed under these almost zero resource conditions are not only promising for speech technology but also for computational language documentation. The goal of computational language documentation is to help field linguists to (semi-)automatically analyze and annotate audio recordings of endangered and unwritten languages. Example tasks are automatic phoneme discovery or lexicon discovery from the speech signal. This paper presents a speech corpus collected during a realistic language documentation process. It is made up of 5k speech utterances in Mboshi (Bantu C25) aligned to French text translations. Speech transcriptions are also made available: they correspond to a non-standard graphemic form close to the language phonology. We present how the data was collected, cleaned and processed and we illustrate its use through a zero-resource task: spoken term discovery. The dataset is made available to the community for reproducible computational language documentation experiments and their evaluation.Comment: accepted to LREC 201

    Recognizing Speech in a Novel Accent: The Motor Theory of Speech Perception Reframed

    Get PDF
    The motor theory of speech perception holds that we perceive the speech of another in terms of a motor representation of that speech. However, when we have learned to recognize a foreign accent, it seems plausible that recognition of a word rarely involves reconstruction of the speech gestures of the speaker rather than the listener. To better assess the motor theory and this observation, we proceed in three stages. Part 1 places the motor theory of speech perception in a larger framework based on our earlier models of the adaptive formation of mirror neurons for grasping, and for viewing extensions of that mirror system as part of a larger system for neuro-linguistic processing, augmented by the present consideration of recognizing speech in a novel accent. Part 2 then offers a novel computational model of how a listener comes to understand the speech of someone speaking the listener's native language with a foreign accent. The core tenet of the model is that the listener uses hypotheses about the word the speaker is currently uttering to update probabilities linking the sound produced by the speaker to phonemes in the native language repertoire of the listener. This, on average, improves the recognition of later words. This model is neutral regarding the nature of the representations it uses (motor vs. auditory). It serve as a reference point for the discussion in Part 3, which proposes a dual-stream neuro-linguistic architecture to revisits claims for and against the motor theory of speech perception and the relevance of mirror neurons, and extracts some implications for the reframing of the motor theory

    Probabilistic Speaker Pronunciation Adaptation for Spontaneous Speech Synthesis Using Linguistic Features

    Get PDF
    International audiencePronunciation adaptation consists in predicting pronunciation variants of words and utterances based on their standard pronunciation and a target style. This is a key issue in text-to-speech as those variants bring expressiveness to synthetic speech, especially when considering a spontaneous style. This paper presents a new pronunciation adaptation method which adapts standard pronunciations to the style of individual speakers in a context of spontaneous speech. Its originality and strength are to solely rely on linguistic features and to consider a probabilistic machine learning framework, namely conditional random fields, to produce the adapted pronunciations. Features are first selected in a series of experiments, then combined to produce the final adaptation method. Backend experiments on the Buckeye conversational English speech corpus show that adapted pronunciations significantly better reflect spontaneous speech than standard ones, and that even better could be achieved if considering alternative predictions

    Experiments on stress-dependent phone modelling for continuous speech recognition

    No full text

    The LIMSI continuous speech dictation system: evaluation on the ARPA Wall Street Journal task

    No full text

    Large vocabulary speech recognition in French

    No full text
    corecore