129 research outputs found

    Large Interferometer For Exoplanets (LIFE): VIII. Where is the phosphine? Observing exoplanetary PH3 with a space based MIR nulling interferometer

    Full text link
    Phosphine could be a key molecule in the understanding of exotic chemistry happening in (exo)planetary atmospheres. While it has been detected in the Solar System's giant planets, it has not been observed in exoplanets yet. In the exoplanetary context however it has been theorized as a potential biosignature molecule. The goal of our study is to identify which illustrative science cases for PH3 chemistry are observable with a space-based mid-infrared nulling interferometric observatory like the LIFE (Large Interferometer For Exoplanets) concept. We identified a representative set of scenarios for PH3 detections in exoplanetary atmospheres varying over the whole dynamic range of the LIFE mission. We used chemical kinetics and radiative transfer calculations to produce forward models of these informative, prototypical observational cases for LIFEsim, our observation simulator software for LIFE. In a detailed, yet first order approximation it takes a mission like LIFE: (i) about 1h to find phosphine in a warm giant around a G star at 10 pc, (ii) about 10 h in H2 or CO2 dominated temperate super-Earths around M star hosts at 5 pc, (iii) and even in 100h it seems very unlikely that phosphine would be detectable in a Venus-Twin with extreme PH3 concentrations at 5 pc. Phosphine in concentrations previously discussed in the literature is detectable in 2 out of the 3 cases and about an order of magnitude faster than comparable cases with JWST. We show that there is a significant number of objects accessible for these classes of observations. These results will be used to prioritize the parameter range for the next steps with more detailed retrieval simulations. They will also inform timely questions in the early design phase of a mission like LIFE and guide the community by providing easy-to-scale first estimates for a large part of detection space of such a mission.Comment: In press. Accepted for publication in Astrobiology on 02 November 2022. 26 pages, 5 figures and 8 table

    The Large Interferometer For Exoplanets (LIFE): a space mission for mid-infrared nulling interferometry

    Get PDF

    Large Interferometer For Exoplanets (LIFE) : XIV. Finding terrestrial protoplanets in the galactic neighborhood

    Get PDF
    © 2024 The Author(s). This is an open access article distributed under the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/The increased brightness temperature of young rocky protoplanets during their magma ocean epoch makes them potentially amenable to atmospheric characterization to distances from the solar system far greater than thermally equilibrated terrestrial exoplanets, offering observational opportunities for unique insights into the origin of secondary atmospheres and the near surface conditions of prebiotic environments. The Large Interferometer For Exoplanets (LIFE) mission will employ a space-based mid-infrared nulling interferometer to directly measure the thermal emission of terrestrial exoplanets. Here, we seek to assess the capabilities of various instrumental design choices of the LIFE mission concept for the detection of cooling protoplanets with transient high-temperature magma ocean atmospheres, in young stellar associations in particular. Using the LIFE mission instrument simulator (LIFEsim) we assess how specific instrumental parameters and design choices, such as wavelength coverage, aperture diameter, and photon throughput, facilitate or disadvantage the detection of protoplanets. We focus on the observational sensitivities of distance to the observed planetary system, protoplanet brightness temperature using a blackbody assumption, and orbital distance of the potential protoplanets around both G- and M-dwarf stars. Our simulations suggest that LIFE will be able to detect (S/N \geq 7) hot protoplanets in young stellar associations up to distances of \approx100 pc from the solar system for reasonable integration times (up to \simhours). Detection of an Earth-sized protoplanet orbiting a solar-sized host star at 1 AU requires less than 30 minutes of integration time. M-dwarfs generally need shorter integration times. The contribution from wavelength regions $Peer reviewe

    The GAPS Programme at TNG. XXVIII. A pair of hot-Neptunes orbiting the young star TOI-942

    Get PDF
    Context. Young stars and multi-planet systems are two types of primary objects that allow us to study, understand, and constrain planetary formation and evolution theories. Aims: We validate the physical nature of two Neptune-sized planets transiting TOI-942 (TYC 5909-319-1), a previously unacknowledged young star (50-20+30 Myr) observed by the TESS space mission in Sector 5. Methods: Thanks to a comprehensive stellar characterization, TESS light curve modeling and precise radial-velocity measurements, we validated the planetary nature of the TESS candidate and detected an additional transiting planet in the system on a larger orbit. Results: From photometric and spectroscopic observations we performed an exhaustive stellar characterization and derived the main stellar parameters. TOI-942 is a relatively active K2.5V star (log R'HK = -4.17 ± 0.01) with rotation period Prot = 3.39 ± 0.01 days, a projected rotation velocity v sin i⋆ = 13.8 ± 0.5 km s-1, and a radius of ~0.9 R⊙. We found that the inner planet, TOI-942 b, has an orbital period Pb = 4.3263 ± 0.0011 days, a radius Rb = 4.242-0.313+0.376 R⊕, and a mass upper limit of 16 M⊕ at 1σ confidence level. The outer planet, TOI-942 c, has an orbital period Pc = 10.1605-0.0053+0.0056 days, a radius Rc = 4.793-0.351+0.410 R⊕, and a mass upper limit of 37 M⊕ at 1σ confidence level. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated by the Fundación Galileo Galilei (FGG) of the Istituto Nazionale di Astrofisica (INAF) at the Observatorio del Roque de los Muchachos (La Palma, Canary Islands, Spain). The authors became aware of a parallel effort on the characterization of TOI-942 by Zhou et al. (2021) in the late stages of the manuscript preparations. The submissions are coordinated, and no analyses or results were shared prior to submission

    The GAPS Programme at TNG. XXI. A GIARPS case study of known young planetary candidates: confirmation of HD 285507 b and refutation of AD Leonis b

    Get PDF
    Context. The existence of hot Jupiters is still not well understood. Two main channels are thought to be responsible for their current location: a smooth planet migration through the protoplanetary disk or the circularization of an initial highly eccentric orbit by tidal dissipation leading to a strong decrease in the semimajor axis. Different formation scenarios result in different observable effects, such as orbital parameters (obliquity and eccentricity) or frequency of planets at different stellar ages. Aims: In the context of the GAPS Young Objects project, we are carrying out a radial velocity survey with the aim of searching and characterizing young hot-Jupiter planets. Our purpose is to put constraints on evolutionary models and establish statistical properties, such as the frequency of these planets from a homogeneous sample. Methods: Since young stars are in general magnetically very active, we performed multi-band (visible and near-infrared) spectroscopy with simultaneous GIANO-B + HARPS-N (GIARPS) observing mode at TNG. This helps in dealing with stellar activity and distinguishing the nature of radial velocity variations: stellar activity will introduce a wavelength-dependent radial velocity amplitude, whereas a Keplerian signal is achromatic. As a pilot study, we present here the cases of two known hot Jupiters orbiting young stars: HD 285507 b and AD Leo b. Results: Our analysis of simultaneous high-precision GIARPS spectroscopic data confirms the Keplerian nature of the variation in the HD 285507 radial velocities and refines the orbital parameters of the hot Jupiter, obtaining an eccentricity consistent with a circular orbit. Instead, our analysis does not confirm the signal previously attributed to a planet orbiting AD Leo. This demonstrates the power of the multi-band spectroscopic technique when observing active stars. Photometry, RV, and time series are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/638/A5 Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated by the Fundación Galileo Galilei (FGG) of the Istituto Nazionale di Astrofisica (INAF) at the Observatorio del Roque de los Muchachos (La Palma, Canary Islands, Spain). Partly based on data obtained with the STELLA robotic telescopes in Tenerife, an AIP facility jointly operated by AIP and IAC
    corecore