127 research outputs found
Objectively assessing intraoperative arthroscopic skills performance and the transfer of simulation training in knee arthroscopy: a randomised controlled trial
Purpose: Objectively investigate the transfer validity of simulation training, using wireless elbow-worn motion sensors intra-operatively to assess whether surgical simulation leads to improvements in intra-operative arthroscopic performance. Methods: Randomised controlled trial. PGY2-3 trainees in nationally-approved orthopaedic surgery posts were randomised to standard junior residency training (control group), or standard training plus additional weekly simulation training (intervention group). Both groups performed a supervised real-life diagnostic knee arthroscopy in the operating room at 13 weeks. Performance was measured using wireless elbow-worn motion sensors recording objective surgical performance metrics: the number of hand movements; smoothness; and time taken. A participant:supervisor performance ratio was used to adjust for variation in case-mix and difficulty. The study took place in a surgical simulation suite and orthopaedic operating rooms of a university teaching hospital. Results: The intervention group objectively outperformed the control group for all outcome metrics. Procedures performed by the intervention group required fewer hand movements (counts; 544[465-593] vs 893[747-1242], p<0.001), had smoother movements (ms-3; 25,842[20,867-27,468] vs 36,846[29,840-53,949], p<0.001) and took less time (seconds; 320[294-392] vs 573[477-860], p<0.001) than the control group. The cases were comparable between the groups. Standardised to the supervisors performance, the intervention group required fewer hand movements (1.9[1.5-2.1] vs 3.3[2.2-4.8], p=0.0091), less time (1.2[1.1-1.7] vs 2.6[1.6-3.0], p=0.0037) and were smoother (2.1[1.8-2.8] vs 4.3[2.8-5.4], p=0.0037) than the control group, but they didn’t perform as well as their supervisors
Enhanced recovery programmes in knee arthroplasty: current concepts
The concept of a multimodal approach to improve the care of surgical patients was first proposed by Kehlet in the 1990s. Measures to optimise the surgical patient, and minimise perioperative stresses, aimed to improve postoperative outcomes. Although originally introduced in colorectal surgery, these ‘enhanced recovery programmes’ have now seen widespread uptake in multiple surgical specialities, including orthopaedics. Patients undergoing knee arthroplasty are well suited to an enhanced recovery approach. These programmes optimise the patient at each stage of the surgical journey, including preoperative optimisation of fitness, perioperative anaesthetic and surgical techniques and finally postoperative rehabilitation and discharge plans. The available evidence supports a number of improvements after programme introduction, including shorter length of stay, morbidity and economics. However, the impact on other outcomes is less clear. One of the issues in the field is a lack of consensus on what interventions an enhanced recovery programme should contain and the specifics of these interventions. As a result, individual units develop their own programmes, making the interpretation and comparison of their impact difficult. This article discusses interventions that could be considered for inclusion in an enhanced recovery programme for knee arthroplasty
Operating room traffic increases aerosolized particles and compromises the air quality: A simulated study.
Background Strategies to prevent bacterial fallout and reduce particle count in the operating room (OR) are key components of preventing periprosthetic joint infection. Although OR traffic control is an important factor, a quantitative study has not been performed to investigate the influence of personnel and door opening on OR air quality. This simulated study aimed to examine the influence of these 2 factors on particle density in OR with and without the laminar air flow (LAF). Methods Both experiments took place within an empty OR of an arthroplasty unit equipped with an LAF system. First, the number of particles in the air was counted using a particle counting apparatus while 9 persons entered the room, one every 15 minutes. Second, the door was opened and closed starting with zero door openings per minute and increasing to 4 in 15-minute increments. Both experiments were performed once with the LAF turned on and once without. Results The number of personnel in the OR and the number of door openings per minute correlate with the density of particles. Both relationships were significantly reduced by turning the LAF on (correlation coefficients <0.4). With the LAF being turned on, the particle density per person decreased from 211.19 to 18.19 particles/ft3 (P < .001) and the particle density per rate of door openings declined from 117.80 to 1.90 particles/ft3 (P ¼ .017). Conclusion This study confirms that personnel and door opening are a major source of particles in the OR air. Controlling traffic is critical for reduction of particles and is likely to be a key preventative strategy in reducing periprosthetic joint infection. LAF is protective against the negative influence of number of people and door openings
Diagnosis of periprosthetic joint infection: The promise of next-generation sequencing
Background:
Next-generation sequencing is a well-established technique for sequencing of DNA and has recently gained attention in many fields of medicine. Our aim was to evaluate the accuracy of next-generation sequencing in identifying the causative organism(s) in patients with periprosthetic joint infection.
Methods:
In this prospective study, samples were collected from 65 revision arthroplasties (39 knees and 26 hips) and 17 primary arthroplasties (9 hips and 8 knees). Synovial fluid, deep tissue, and swabs were obtained at the time of the surgical procedure and were shipped to the laboratory for next-generation sequencing. Deep-tissue specimens were also sent to the institutional laboratory for culture. Sensitivity and specificity were calculated for next-generation sequencing, using the Musculoskeletal Infection Society (MSIS) definition of periprosthetic joint infection as the standard.
Results:
In 28 revisions, the cases were considered to be infected; cultures were positive in 17 cases (60.7% [95% confidence interval (CI), 40.6% to 78.5%]), and next-generation sequencing was positive in 25 cases (89.3% [95% CI, 71.8% to 97.7%]), with concordance between next-generation sequencing and culture in 15 cases. Among the 11 cases of culture-negative periprosthetic joint infection, next-generation sequencing was able to identify an organism in 9 cases (81.8% [95% CI, 48.2% to 97.7%]). Next-generation sequencing identified microbes in 9 (25.0% [95% CI, 12.1% to 42.2%]) of 36 aseptic revisions with negative cultures and in 6 (35.3% [95% CI, 14.2% to 61.7%]) of 17 primary total joint arthroplasties. Next-generation sequencing detected several organisms in most positive samples. However, in the majority of patients who were infected, 1 or 2 organisms were dominant.
Conclusions:
Next-generation sequencing may be a useful adjunct in identification of the causative organism(s) in culture-negative periprosthetic joint infection. Our findings suggest that some cases of monomicrobial periprosthetic joint infection may have additional organisms that escape detection when culture is used. Further study is required to determine the clinical implications of isolated organisms in samples from patients who are not thought to be infected.
Level of Evidence:
Diagnostic Level I. See Instructions for Authors for a complete description of levels of evidence
Effect of cube texture on local softening of friction stir welded joints for nanostructured AA2024 processed by accumulative roll bonding
Copyright © 2023 The Authors. The current research provides an insight into the correlation between the crystallographic textures, microstructure, and hardness of friction stir welded joints in nanostructured AA2024 alloys processed through accumulative roll bonding (ARB). Utilizing varying rotational speeds (250, 500, 750, and 1000 rpm) at a constant traverse tool (150 mm/min) during friction stir welding (FSW), microstructural analyses reveal distinct grain structures and texture components in the nugget zone. The fully recrystallized Cube {001}⟨100⟩ texture-oriented grains appear at the rotational speed of 750 rpm. The hardness profiles of ARB-processed strips after FSW at different rotational speeds show local softening in the nugget zones. There might be a hypothesis concerning the dissolution of stable and metastable precipitates based on generated heat input, providing insights into the mechanisms influencing hardness variations. Notably, the examination of Cube {001}⟨100⟩ texture and its correlation with local softening adds a valuable dimension to the understanding of microstructural changes in FSW of nanostructured AA2024 alloys processed by accumulative roll bonding process
Improving strength-ductility synergy of nano/ultrafine-structured Al/Brass composite by cross accumulative roll bonding process
Copyright © 2023 The Author(s). Increasing the strength of metallic multilayered composites fabricated through accumulative roll bonding (ARB) is typically accompanied by a sacrifice in ductility. In the current work, we propose a strategy to achieve microstructural refinement and outstanding strength-ductility synergy in Al/Brass composites. Here, the aluminum matrix exhibits a bimodal grain distribution, consisting of fine equiaxed grains with an average size of ∼100 nm and ultrafine-elongated grains, in which the brass fragments were distributed uniformly. These microstructural features, introduced through cross accumulative roll bonding (CARB), provide synergistic strengthening effects. The CARB processed composite exhibits a mean misorientation angle of 43.16° and a fraction of high angle grain boundaries of 87%, compared to values of 38.02° and 79% for ARB processed specimen. The CARB processed composite demonstrates a major texture characterized by prominent Rotated Brass {110}, Rotated Goss {011}, and Rotated Cube {001} components. In contrast, the ARB processed specimen revealed strong Goss {011}, Rotated Goss {011}, Brass {011}, and S {123} components. The Copper {112} and S {123} components were nearly absent in the CARB processed composite, because both of them were unstable under the CARB regime. The CARB processed composite shows a tensile strength of 405 MPa and a remarkable elongation of 12.4% at ambient temperature, outperforming ARB processed specimen with a tensile strength of 335 MPa and elongation of 9.5%. These unique mechanical properties in the CARB processed composite are ascribed to the dislocation strengthening, bimodal grain size distribution, uniformity of the brass fragments, and quality of bonding at the interfaces.Ministry of Science and Higher Education of the Russian Federation (FENU-2023-0013).; Seoul National University, Seoul, South Korea (Brain Korea 21 (BK21) Postdoctoral Fellowship to MN).
Clinical outcome of massive endoprostheses used for managing periprosthetic joint infections of the hip and knee
Background Endoprosthetic replacement (EPR) is an option for management of massive bone loss resulting from infection around failed lower limb implants. The aim of this study is to determine the midterm outcome of EPRs performed in the treatment of periprosthetic joint infection (PJI) and infected failed osteosyntheses around the hip and knee joint and identify factors that influence it. Methods We retrospectively reviewed all hip and knee EPRs performed between 2007 and 2014 for the management of chronic infection following complex arthroplasty or fracture fixation. Data recorded included indication for EPR, number of previous surgeries, comorbidities, and organism identified. Outcome measures included PJI eradication rate, complications, implant survival, mortality, and functional outcome (Oxford Hip or Knee Score). Results Sixty-nine EPRs (29 knees and 40 hips) were performed with a mean age of 68 years (43-92). Polymicrobial growth was detected in 36% of cases, followed by coagulase-negative staphylococci (28%) and Staphylococcus aureus (10%). Recurrence of infection occurred in 19 patients (28%): 5 were treated with irrigation and debridement, 5 with revision, 1 with above-knee amputation, and 8 remain on longterm antibiotics. PJI eradication was achieved in 50 patients (72%); the chance of PJI eradication was greater in hips (83%) than in knees (59%) (P ¼ .038). The 5-year implant survivorship was 81% (95% confidence interval 74-88). The mean Oxford Hip Score and Oxford Knee Score were 22 (4-39) and 21 (6-43), respectively. Conclusion This study supports the use of EPRs for eradication of PJI in complex, multiply revised cases. We describe PJI eradication rate of 72% with acceptable functional outcome
Global, regional, and national burden of rheumatoid arthritis, 1990–2020, and projections to 2050: a systematic analysis of the Global Burden of Disease Study 2021
Background
Rheumatoid arthritis is a chronic autoimmune inflammatory disease associated with disability and premature death. Up-to-date estimates of the burden of rheumatoid arthritis are required for health-care planning, resource allocation, and prevention. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021, we provide updated estimates of the prevalence of rheumatoid arthritis and its associated deaths and disability-adjusted life-years (DALYs) by age, sex, year, and location, with forecasted prevalence to 2050.
Methods
Rheumatoid arthritis prevalence was estimated in 204 countries and territories from 1990 to 2020 using Bayesian meta-regression models and data from population-based studies and medical claims data (98 prevalence and 25 incidence studies). Mortality was estimated from vital registration data with the Cause of Death Ensemble model (CODEm). Years of life lost (YLL) were calculated with use of standard GBD lifetables, and years lived with disability (YLDs) were estimated from prevalence, a meta-analysed distribution of rheumatoid arthritis severity, and disability weights. DALYs were calculated by summing YLLs and YLDs. Smoking was the only risk factor analysed. Rheumatoid arthritis prevalence was forecast to 2050 by logistic regression with Socio-Demographic Index as a predictor, then multiplying by projected population estimates.
Findings
In 2020, an estimated 17·6 million (95% uncertainty interval 15·8–20·3) people had rheumatoid arthritis worldwide. The age-standardised global prevalence rate was 208·8 cases (186·8–241·1) per 100 000 population, representing a 14·1% (12·7–15·4) increase since 1990. Prevalence was higher in females (age-standardised female-to-male prevalence ratio 2·45 [2·40–2·47]). The age-standardised death rate was 0·47 (0·41–0·54) per 100 000 population (38 300 global deaths [33 500–44 000]), a 23·8% (17·5–29·3) decrease from 1990 to 2020. The 2020 DALY count was 3 060 000 (2 320 000–3 860 000), with an age-standardised DALY rate of 36·4 (27·6–45·9) per 100 000 population. YLDs accounted for 76·4% (68·3–81·0) of DALYs. Smoking risk attribution for rheumatoid arthritis DALYs was 7·1% (3·6–10·3). We forecast that 31·7 million (25·8–39·0) individuals will be living with rheumatoid arthritis worldwide by 2050.
Interpretation
Rheumatoid arthritis mortality has decreased globally over the past three decades. Global age-standardised prevalence rate and YLDs have increased over the same period, and the number of cases is projected to continue to increase to the year 2050. Improved access to early diagnosis and treatment of rheumatoid arthritis globally is required to reduce the future burden of the disease.publishedVersio
The impact of patient-specific instrumentation on unicompartmental knee arthroplasty: a prospective randomised controlled study
Prevalence, years lived with disability, and trends in anaemia burden by severity and cause, 1990–2021: findings from the Global Burden of Disease Study 2021
Background: Anaemia is a major health problem worldwide. Global estimates of anaemia burden are crucial for developing appropriate interventions to meet current international targets for disease mitigation. We describe the prevalence, years lived with disability, and trends of anaemia and its underlying causes in 204 countries and territories. Methods: We estimated population-level distributions of haemoglobin concentration by age and sex for each location from 1990 to 2021. We then calculated anaemia burden by severity and associated years lived with disability (YLDs). With data on prevalence of the causes of anaemia and associated cause-specific shifts in haemoglobin concentrations, we modelled the proportion of anaemia attributed to 37 underlying causes for all locations, years, and demographics in the Global Burden of Disease Study 2021. Findings: In 2021, the global prevalence of anaemia across all ages was 24·3% (95% uncertainty interval [UI] 23·9–24·7), corresponding to 1·92 billion (1·89–1·95) prevalent cases, compared with a prevalence of 28·2% (27·8–28·5) and 1·50 billion (1·48–1·52) prevalent cases in 1990. Large variations were observed in anaemia burden by age, sex, and geography, with children younger than 5 years, women, and countries in sub-Saharan Africa and south Asia being particularly affected. Anaemia caused 52·0 million (35·1–75·1) YLDs in 2021, and the YLD rate due to anaemia declined with increasing Socio-demographic Index. The most common causes of anaemia YLDs in 2021 were dietary iron deficiency (cause-specific anaemia YLD rate per 100 000 population: 422·4 [95% UI 286·1–612·9]), haemoglobinopathies and haemolytic anaemias (89·0 [58·2–123·7]), and other neglected tropical diseases (36·3 [24·4–52·8]), collectively accounting for 84·7% (84·1–85·2) of anaemia YLDs. Interpretation: Anaemia remains a substantial global health challenge, with persistent disparities according to age, sex, and geography. Estimates of cause-specific anaemia burden can be used to design locally relevant health interventions aimed at improving anaemia management and prevention. Funding: Bill & Melinda Gates Foundation
- …
