4,844 research outputs found
TCP throughput guarantee in the DiffServ Assured Forwarding service: what about the results?
Since the proposition of Quality of Service architectures by the IETF, the
interaction between TCP and the QoS services has been intensively studied. This
paper proposes to look forward to the results obtained in terms of TCP
throughput guarantee in the DiffServ Assured Forwarding (DiffServ/AF) service
and to present an overview of the different proposals to solve the problem. It
has been demonstrated that the standardized IETF DiffServ conditioners such as
the token bucket color marker and the time sliding window color maker were not
good TCP traffic descriptors. Starting with this point, several propositions
have been made and most of them presents new marking schemes in order to
replace or improve the traditional token bucket color marker. The main problem
is that TCP congestion control is not designed to work with the AF service.
Indeed, both mechanisms are antagonists. TCP has the property to share in a
fair manner the bottleneck bandwidth between flows while DiffServ network
provides a level of service controllable and predictable. In this paper, we
build a classification of all the propositions made during these last years and
compare them. As a result, we will see that these conditioning schemes can be
separated in three sets of action level and that the conditioning at the
network edge level is the most accepted one. We conclude that the problem is
still unsolved and that TCP, conditioned or not conditioned, remains
inappropriate to the DiffServ/AF service
The First Year of the Large Hadron Collider: A Brief Review
The first year of LHC data taking provided an integrated luminosity of about
35/pb in proton-proton collisions at sqrt(s)=7 TeV. The accelerator and the
experiments have demonstrated an excellent performance. The experiments have
obtained important physics results in many areas, ranging from tests of the
Standard Model to searches for new particles. Among other results the physics
highlights have been the measurements of the W-, Z-boson and t t-bar production
cross-sections, improved limits on supersymmetric and other hypothetical
particles and the observation of jet-quenching, elliptical flow and J/Psi
suppression in lead-lead collisions at sqrt(sNN) = 2.76 TeV.Comment: 11 pages, 9 figures, invited brief review for Mod. Phys. Lett.
Performance of upstream interaction region detectors for the FIRST experiment at GSI
The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at GSI has been designed to study carbon fragmentation, measuring 12C double differential cross sections (∂2σ/ ∂θ∂E) for different beam energies between 100 and 1000 MeV/u. The experimental setup integrates newly designed detectors in the, so called, Interaction Region around the graphite target. The Interaction Region upstream detectors are a 250 μm thick scintillator and a drift chamber optimized for a precise measurement of the ions interaction time and position on the target. In this article we review the design of the upstream detectors along with the preliminary results of the data taking performed on August 2011 with 400 MeV/u fully stripped carbon ion beam at GSI. Detectors performances will be reviewed and compared to those obtained during preliminary tests, performed with 500 MeV electrons (at the BTF facility in the INFN Frascati Laboratories) and 80 MeV/u protons and carbon ions (at the INFN LNS Laboratories in Catania)
X-ray analog pixel array detector for single synchrotron bunch time-resolved imaging
Dynamic x-ray studies may reach temporal resolutions limited by only the
x-ray pulse duration if the detector is fast enough to segregate synchrotron
pulses. An analog integrating pixel array detector with in-pixel storage and
temporal resolution of around 150 ns, sufficient to isolate pulses, is
presented. Analog integration minimizes count-rate limitations and in-pixel
storage captures successive pulses. Fundamental tests of noise and linearity as
well as high-speed laser measurements are shown. The detector resolved
individual bunch trains at the Cornell High Energy Synchrotron Source (CHESS)
at levels of up to 3.7x10^3 x-rays/pixel/train. When applied to turn-by-turn
x-ray beam characterization single-shot intensity measurements were made with a
repeatability of 0.4% and horizontal oscillations of the positron cloud were
detected. This device is appropriate for time-resolved Bragg spot single
crystal experiments.Comment: 9 pages, 11 figure
Optical Link of the Atlas Pixel Detector
The on-detector optical link of the ATLAS pixel detector contains
radiation-hard receiver chips to decode bi-phase marked signals received on PIN
arrays and data transmitter chips to drive VCSEL arrays. The components are
mounted on hybrid boards (opto-boards). We present results from the irradiation
studies with 24 GeV protons up to 32 Mrad (1.2 x 10^15 p/cm^2) and the
experience from the production.Comment: 9th ICATPP Conference, Como, Ital
Measurement of the neutron detection efficiency of a 80% absorber - 20% scintillating fibers calorimeter
The neutron detection efficiency of a sampling calorimeter made of 1 mm
diameter scintillating fibers embedded in a lead/bismuth structure has been
measured at the neutron beam of the The Svedberg Laboratory at Uppsala. A
significant enhancement of the detection efficiency with respect to a bulk
organic scintillator detector with the same thickness is observed.Comment: 10 pages, 7 figure
Convex Structuring Element Decomposition for Single Scan Binary Mathematical Morphology
International audienceThis paper presents a structuring element decomposition method and a corresponding morphological erosion algorithm able to compute the binary erosion of an image using a single regular pass whatever the size of the convex structuring element. Similarly to classical dilation-based methods, the proposed decomposition is iterative and builds a growing set of structuring elements. The novelty consists in using the set union instead of the Minkowski sum as the elementary structuring element construction operator. At each step of the construction, already-built elements can be joined together in any combination of translations and set unions. There is no restrictions on the shape of the structuring element that can be built. Arbitrary shape decompositions can be obtained with existing genetic algorithms with an homogeneous construction method. This paper, however, addresses the problem of convex shape decomposition with a deterministic method
Beam Test Performance and Simulation of Prototypes for the ALICE Silicon Pixel Detector
The silicon pixel detector (SPD) of the ALICE experiment in preparation at
the Large Hadron Collider (LHC) at CERN is designed to provide the precise
vertex reconstruction needed for measuring heavy flavor production in heavy ion
collisions at very high energies and high multiplicity. The SPD forms the
innermost part of the Inner Tracking System (ITS) which also includes silicon
drift and silicon strip detectors. Single assembly prototypes of the ALICE SPD
have been tested at the CERN SPS using high energy proton/pion beams in 2002
and 2003. We report on the experimental determination of the spatial precision.
We also report on the first combined beam test with prototypes of the other ITS
silicon detector technologies at the CERN SPS in November 2004. The issue of
SPD simulation is briefly discussed.Comment: 4 pages, 5 figures, prepared for proceedings of 7th International
Position Sensitive Detectors Conference, Liverpool, Sept. 200
- …
