4,219 research outputs found
New class of compounds have very low vapor pressures
Magnesium hexahydrate tetrachlorometallates are 50-volume-percent water, have a high melting point and possess a low vapor pressure. These new compounds are relatively noncorrosive, thermally stable, and water soluble but not hygroscopic. They may have potential applications as cooling fluids
Fragility and compressibility at the glass transition
Isothermal compressibilities and Brillouin sound velocities from the
literature allow to separate the compressibility at the glass transition into a
high-frequency vibrational and a low-frequency relaxational part. Their ratio
shows the linear fragility relation discovered by x-ray Brillouin scattering
[1], though the data bend away from the line at higher fragilities. Using the
concept of constrained degrees of freedom, one can show that the vibrational
part follows the fragility-independent Lindemann criterion; the fragility
dependence seems to stem from the relaxational part. The physical meaning of
this finding is discussed. [1] T. Scopigno, G. Ruocco, F. Sette and G. Monaco,
Science 302, 849 (2003)Comment: 4 pages, 2 figures, 2 tables, 33 references. Slightly changed after
refereein
The viscous slowing down of supercooled liquids as a temperature-controlled superArrhenius activated process: a description in terms of frustration-limited domains
We propose that the salient feature to be explained about the glass
transition of supercooled liquids is the temperature-controlled superArrhenius
activated nature of the viscous slowing down, more strikingly seen in
weakly-bonded, fragile systems. In the light of this observation, the relevance
of simple models of spherically interacting particles and that of models based
on free-volume congested dynamics are questioned. Finally, we discuss how the
main aspects of the phenomenology of supercooled liquids, including the
crossover from Arrhenius to superArrhenius activated behavior and the
heterogeneous character of the relaxation, can be described by an
approach based on frustration-limited domains.Comment: 13 pages, 4 figures, accepted in J. Phys.: Condensed Matter,
proceedings of the Trieste workshop on "Unifying Concepts in Glass Physics
The relationship between fragility, configurational entropy and the potential energy landscape of glass forming liquids
Glass is a microscopically disordered, solid form of matter that results when
a fluid is cooled or compressed in such a fashion that it does not crystallise.
Almost all types of materials are capable of glass formation -- polymers, metal
alloys, and molten salts, to name a few. Given such diversity, organising
principles which systematise data concerning glass formation are invaluable.
One such principle is the classification of glass formers according to their
fragility\cite{fragility}. Fragility measures the rapidity with which a
liquid's properties such as viscosity change as the glassy state is approached.
Although the relationship between features of the energy landscape of a glass
former, its configurational entropy and fragility have been analysed previously
(e. g.,\cite{speedyfr}), an understanding of the origins of fragility in these
features is far from being well established. Results for a model liquid, whose
fragility depends on its bulk density, are presented in this letter. Analysis
of the relationship between fragility and quantitative measures of the energy
landscape (the complicated dependence of energy on configuration) reveal that
the fragility depends on changes in the vibrational properties of individual
energy basins, in addition to the total number of such basins present, and
their spread in energy. A thermodynamic expression for fragility is derived,
which is in quantitative agreement with {\it kinetic} fragilities obtained from
the liquid's diffusivity.Comment: 8 pages, 3 figure
Comment on "microscopic theory of network glasses"
Calorimetric experiments on network glasses provide information on the
ergodicity (landscape) temperature of supercooled liquids and can be compared
with a recent theory developed by Hall and Wolynes [PRL90, 085505 (2003)]Comment: 2 pages, 2 EPS figures RevTEX. to appear in Physical review Letter
Space-time Thermodynamics of the Glass Transition
We consider the probability distribution for fluctuations in dynamical action
and similar quantities related to dynamic heterogeneity. We argue that the
so-called "glass transition" is a manifestation of low action tails in these
distributions where the entropy of trajectory space is sub-extensive in time.
These low action tails are a consequence of dynamic heterogeneity and an
indication of phase coexistence in trajectory space. The glass transition,
where the system falls out of equilibrium, is then an order-disorder phenomenon
in space-time occurring at a temperature T_g which is a weak function of
measurement time. We illustrate our perspective ideas with facilitated lattice
models, and note how these ideas apply more generally.Comment: 5 pages, 4 figure
Spinodal of supercooled polarizable water
We develop a series of molecular dynamics computer simulations of liquid
water, performed with a polarizable potential model, to calculate the spinodal
line and the curve of maximum density inside the metastable supercooled region.
After analysing the structural properties,the liquid spinodal line is followed
down to T=210 K. A monotonic decrease is found in the explored region. The
curve of maximum density bends on approaching the spinodal line. These results,
in agreement with similar studies on non polarizable models of water, are
consistent with the existence of a second critical point for water.Comment: 8 pages, 5 figures, 2 tables. To be published in Phys. Re
Nucleation and crystallization process of silicon using Stillinger-Weber potential
We study the homogeneous nucleation process in Stillinger-Weber silicon in
the NVT ensemble. A clear first-order transition from the liquid to crystal
phase is observed thermodynamically with kinetic and structural evidence of the
transformation. At 0.75 T_m, the critical cluster size is about 175 atoms. The
lifetime distribution of clusters as a function of the maximum size their reach
follows an inverse gaussian distribution as was predicted recently from the
classical theory of nucleation (CNT). However, while there is a qualitative
agreement with the CNT, the free energy curve obtained from the simulations
differs significantly from the theoretical predictions, suggesting that the
low-density liquid phase found recently could play a role in the nucleation
process.Comment: 21 page
Microscopic theory of network glasses
A molecular theory of the glass transition of network forming liquids is
developed using a combination of self-consistent phonon and liquid state
approaches. Both the dynamical transition and the entropy crisis characteristic
of random first order transitions are mapped out as a function of the degree of
bonding and the density. Using a scaling relation for a soft-core model to
crudely translate the densities into temperatures, the theory predicts that the
ratio of the dynamical transition temperature to the laboratory transition
temperature rises as the degree of bonding increases, while the Kauzmann
temperature falls relative to the laboratory transition. These results indicate
why highly coordinated liquids should be "strong" while van der Waals liquids
without coordination are "fragile".Comment: slightly revised version that has been accepted for publication in
Phys. Rev. Let
- …
