267 research outputs found

    An adaptive hierarchical domain decomposition method for parallel contact dynamics simulations of granular materials

    Full text link
    A fully parallel version of the contact dynamics (CD) method is presented in this paper. For large enough systems, 100% efficiency has been demonstrated for up to 256 processors using a hierarchical domain decomposition with dynamic load balancing. The iterative scheme to calculate the contact forces is left domain-wise sequential, with data exchange after each iteration step, which ensures its stability. The number of additional iterations required for convergence by the partially parallel updates at the domain boundaries becomes negligible with increasing number of particles, which allows for an effective parallelization. Compared to the sequential implementation, we found no influence of the parallelization on simulation results.Comment: 19 pages, 15 figures, published in Journal of Computational Physics (2011

    Overlapping Schwarz Decomposition for Constrained Quadratic Programs

    Full text link
    We present an overlapping Schwarz decomposition algorithm for constrained quadratic programs (QPs). Schwarz algorithms have been traditionally used to solve linear algebra systems arising from partial differential equations, but we have recently shown that they are also effective at solving structured optimization problems. In the proposed scheme, we consider QPs whose algebraic structure can be represented by graphs. The graph domain is partitioned into overlapping subdomains (yielding a set of coupled subproblems), solutions for the subproblems are computed in parallel, and convergence is enforced by updating primal-dual information in the overlapping regions. We show that convergence is guaranteed if the overlap is sufficiently large and that the convergence rate improves exponentially with the size of the overlap. Convergence results rely on a key property of graph-structured problems that is known as exponential decay of sensitivity. Here, we establish conditions under which this property holds for constrained QPs (as those found in network optimization and optimal control), thus extending existing work that addresses unconstrained QPs. The numerical behavior of the Schwarz scheme is demonstrated by using a DC optimal power flow problem defined over a network with 9,241 nodes

    Intrusive analysis for NEK5000: development of intrusive uncertainty quantification for high-dimensional, high-fidelity codes.

    Full text link

    A parametric study on the dynamic response of planar multibody systems with multiple clearance joints

    Get PDF
    A general methodology for dynamic modeling and analysis of multibody systems with multiple clearance joints is presented and discussed in this paper. The joint components that constitute a real joint are modeled as colliding bodies, being their behavior influenced by geometric and physical properties of the contacting surfaces. A continuous contact force model, based on the elastic Hertz theory together with a dissipative term, is used to evaluate the intra-joint contact forces. Furthermore, the incorporation of the friction phenomenon, based on the classical Coulomb’s friction law, is also discussed. The suitable contact-impact force models are embedded into the dynamics of multibody systems methodologies. An elementary mechanical system is used to demonstrate the accuracy and efficiency of the presented approach, and to discuss the main assumptions and procedures adopted. Different test scenarios are considered with the purpose of performing a parametric study for quantifying the influence of the clearance size, input crank speed and number of clearance joints on the dynamic response of multibody systems with multiple clearance joints. Additionally, the total computation time consumed in each simulation is evaluated in order to test the computational accuracy and efficiency of the presented approach. From the main results obtained in this study, it can be drawn that clearance size and the operating conditions play a crucial role in predicting accurately the dynamic responses of multibody systems.Fundação para a Ciência e a Tecnologia (FCT

    On the contact detection for contact-impact analysis in multibody systems

    Get PDF
    One of the most important and complex parts of the simulation of multibody systems with contact-impact involves the detection of the precise instant of impact. In general, the periods of contact are very small and, therefore, the selection of the time step for the integration of the time derivatives of the state variables plays a crucial role in the dynamics of multibody systems. The conservative approach is to use very small time steps throughout the analysis. However, this solution is not efficient from the computational view point. When variable time step integration algorithms are used and the pre-impact dynamics does not involve high-frequencies the integration algorithms may use larger time steps and the contact between two surfaces may start with initial penetrations that are artificially high. This fact leads either to a stall of the integration algorithm or to contact forces that are physically impossible which, in turn, lead to post-impact dynamics that is unrelated to the physical problem. The main purpose of this work is to present a general and comprehensive approach to automatically adjust the time step, in variable time step integration algorithms, in the vicinity of contact of multibody systems. The proposed methodology ensures that for any impact in a multibody system the time step of the integration is such that any initial penetration is below any prescribed threshold. In the case of the start of contact, and after a time step is complete, the numerical error control of the selected integration algorithm is forced to handle the physical criteria to accept/reject time steps in equal terms with the numerical error control that it normally uses. The main features of this approach are the simplicity of its computational implementation, its good computational efficiency and its ability to deal with the transitions between non contact and contact situations in multibody dynamics. A demonstration case provides the results that support the discussion and show the validity of the proposed methodology.Fundação para a Ciência e a Tecnologia (FCT
    corecore