837 research outputs found

    The impact of global nuclear mass model uncertainties on rr-process abundance predictions

    Full text link
    Rapid neutron capture or `rr-process' nucleosynthesis may be responsible for half the production of heavy elements above iron on the periodic table. Masses are one of the most important nuclear physics ingredients that go into calculations of rr-process nucleosynthesis as they enter into the calculations of reaction rates, decay rates, branching ratios and Q-values. We explore the impact of uncertainties in three nuclear mass models on rr-process abundances by performing global monte carlo simulations. We show that root-mean-square (rms) errors of current mass models are large so that current rr-process predictions are insufficient in predicting features found in solar residuals and in rr-process enhanced metal poor stars. We conclude that the reduction of global rms errors below 100100 keV will allow for more robust rr-process predictions.Comment: 5 pages, 3 figures, invited talk at the 15th International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics (CGS15), to appear in EPJ Web of Conference

    The sensitivity of r-process nucleosynthesis to the properties of neutron-rich nuclei

    Full text link
    About half of the heavy elements in the Solar System were created by rapid neutron capture, or r-process, nucleosynthesis. In the r-process, heavy elements are built up via a sequence of neutron captures and beta decays in which an intense neutron flux pushes material out towards the neutron drip line. The nuclear network simulations used to test potential astrophysical scenarios for the r-process therefore require nuclear physics data (masses, beta decay lifetimes, neutron capture rates, fission probabilities) for thousands of nuclei far from stability. Only a small fraction of this data has been experimentally measured. Here we discuss recent sensitivity studies that aim to determine the nuclei whose properties are most crucial for r-process calculations.Comment: 8 pages, 4 figures, submitted to the Proceedings of the Fifth International Conference on Fission and Properties of Neutron-Rich Nuclei (ICFN5

    The impact of individual nuclear properties on rr-process nucleosynthesis

    Full text link
    The astrophysical rapid neutron capture process or `rr process' of nucleosynthesis is believed to be responsible for the production of approximately half the heavy element abundances found in nature. This multifaceted problem remains one of the greatest open challenges in all of physics. Knowledge of nuclear physics properties such as masses, β\beta-decay and neutron capture rates, as well as β\beta-delayed neutron emission probabilities are critical inputs that go into calculations of rr-process nucleosynthesis. While properties of nuclei near stability have been established, much still remains unknown regarding neutron-rich nuclei far from stability that may participate in the rr process. Sensitivity studies gauge the astrophysical response of a change in nuclear physics input(s) which allows for the isolation of the most important nuclear properties that shape the final abundances observed in nature. This review summarizes the extent of recent sensitivity studies and highlights how these studies play a key role in facilitating new insight into the rr process. The development of these tools promotes a focused effort for state-of-the-art measurements, motivates construction of new facilities and will ultimately move the community towards addressing the grand challenge of `How were the elements from iron to uranium made?'.Comment: 60 pages, 20 figures, review articl

    Sensitivity studies for r-process nucleosynthesis in three astrophysical scenarios

    Full text link
    In rapid neutron capture, or r-process, nucleosynthesis, heavy elements are built up via a sequence of neutron captures and beta decays that involves thousands of nuclei far from stability. Though we understand the basics of how the r-process proceeds, its astrophysical site is still not conclusively known. The nuclear network simulations we use to test potential astrophysical scenarios require nuclear physics data (masses, beta decay lifetimes, neutron capture rates, fission probabilities) for all of the nuclei on the neutron-rich side of the nuclear chart, from the valley of stability to the neutron drip line. Here we discuss recent sensitivity studies that aim to determine which individual pieces of nuclear data are the most crucial for r-process calculations. We consider three types of astrophysical scenarios: a traditional hot r-process, a cold r-process in which the temperature and density drop rapidly, and a neutron star merger trajectory.Comment: 8 pages, 4 figures, submitted to the Proceedings of the International Nuclear Physics Conference (INPC) 201

    Isomerization Mechanism in Hydrazone-Based Rotary Switches: Lateral Shift, Rotation, or Tautomerization?

    Get PDF
    Two intramolecularly hydrogen-bonded arylhydrazone (aryl = phenyl or naphthyl) molecular switches have been synthesized, and their full and reversible switching between the E and Z configurations have been demonstrated. These chemically controlled configurational rotary switches exist primarily as the E isomer at equilibrium and can be switched to the protonated Z configuration (Z-H^+) by the addition of trifluoroacetic acid. The protonation of the pyridine moiety in the switch induces a rotation around the hydrazone C═N double bond, leading to isomerization. Treating Z-H^+ with base (K_(2)CO_3) yields a mixture of E and “metastable” Z isomers. The latter thermally equilibrates to reinstate the initial isomer ratio. The rate of the Z → E isomerization process showed small changes as a function of solvent polarity, indicating that the isomerization might be going through the inversion mechanism (nonpolar transition state). However, the plot of the logarithm of the rate constant k vs the Dimroth parameter (E_T) gave a linear fit, demonstrating the involvement of a polar transition state (rotation mechanism). These two seemingly contradicting kinetic data were not enough to determine whether the isomerization mechanism goes through the rotation or inversion pathways. The highly negative entropy values obtained for both the forward (E → Z-H^+) and backward (Z → E) processes strongly suggest that the isomerization involves a polarized transition state that is highly organized (possibly involving a high degree of solvent organization), and hence it proceeds via a rotation mechanism as opposed to inversion. Computations of the Z ↔ E isomerization using density functional theory (DFT) at the M06/cc-pVTZ level and natural bond orbital (NBO) wave function analyses have shown that the favorable isomerization mechanism in these hydrogen-bonded systems is hydrazone–azo tautomerization followed by rotation around a C–N single bond, as opposed to the more common rotation mechanism around the C═N double bond

    Precision mass measurements on neutron-rich rare-earth isotopes at JYFLTRAP - reduced neutron pairing and implications for the rr-process calculations

    Full text link
    The rare-earth peak in the rr-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step elucidating the nuclear structure and reducing the uncertainties in rr-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. 158^{158}Nd, 160^{160}Pm, 162^{162}Sm, and 164166^{164-166}Gd have been measured for the first time and the precisions for 156^{156}Nd, 158^{158}Pm, 162,163^{162,163}Eu, 163^{163}Gd, and 164^{164}Tb have been improved considerably. Nuclear structure has been probed via two-neutron separation energies S2nS_{2n} and neutron pairing energy metrics DnD_n. The data do not support the existence of a subshell closure at N=100N=100. Neutron pairing has been found to be weaker than predicted by theoretical mass models. The impact on the calculated rr-process abundances has been studied. Substantial changes resulting in a smoother abundance distribution and a better agreement with the solar rr-process abundances are observed.Comment: 8 pages, 4 figures, accepted for publication in Physical Review Letter

    Kinetic and Thermodynamic Approaches for the Efficient Formation of Mechanical Bonds

    Get PDF
    Among the growing collection of molecular systems under consideration for nanoscale device applications, mechanically interlocked compounds derived from electrochemically switchable bistable [2]rotaxanes and [2]catenanes show great promise. These systems demonstrate dynamic, relative movements between their components, such as shuttling and circumrotation, enabling them to serve as stimuli-responsive switches operated via reversible, electrochemical oxidation−reduction rather than through the addition of chemical reagents. Investigations into these systems have been intense for a number of years, yet limitations associated with their synthesis have hindered incorporation of their mechanical bonds into more complex architectures and functional materials. We have recently addressed this challenge by developing new template-directed synthetic protocols, operating under both kinetic and thermodynamic control, for the preparation of bistable rotaxanes and catenanes. These methodologies are compatible with the molecular recognition between the π-electron-accepting cyclobis(paraquat-p-phenylene) (CBPQT4+) host and complementary π-electron-donating guests. The procedures that operate under kinetic control rely on mild chemical transformations to attach bulky stoppering groups or perform macrocyclizations without disrupting the host−guest binding of the rotaxane or catenane precursors. Alternatively, the protocols that operate under thermodynamic control utilize a reversible ring-opening reaction of the CBPQT4+ ring, providing a pathway for two cyclic starting materials to thread one another to form more thermodynamically stable catenaned products. These complementary pathways generate bistable rotaxanes and catenanes in high yields, simplify mechanical bond formation in these systems, and eliminate the requirement that the mechanical bonds be introduced into the molecular structure in the final step of the synthesis. These new methods have already been put into practice to prepare previously unavailable rotaxane architectures and novel complex materials. Furthermore, the potential for utilizing mechanically interlocked architectures as device components capable of information storage, the delivery of therapeutic agents, or other desirable functions has increased significantly as a result of the development of these improved synthetic protocols

    TOF-Brho Mass Measurements of Very Exotic Nuclides for Astrophysical Calculations at the NSCL

    Full text link
    Atomic masses play a crucial role in many nuclear astrophysics calculations. The lack of experimental values for relevant exotic nuclides triggered a rapid development of new mass measurement devices around the world. The Time-of-Flight (TOF) mass measurements offer a complementary technique to the most precise one, Penning trap measurements, the latter being limited by the rate and half-lives of the ions of interest. The NSCL facility provides a well-suited infrastructure for TOF mass measurements of very exotic nuclei. At this facility, we have recently implemented a TOF-Brho technique and performed mass measurements of neutron-rich nuclides in the Fe region, important for r-process calculations and for calculations of processes occurring in the crust of accreting neutron stars.Comment: 8 pages, 4 figures, submitted to Journal of Physics G, proceedings of Nuclear Physics in Astrophysics II

    THE INFLUENCE OF WATER TEMPERATURE AND FLOW ON YEAR CLASS STRENGTH OF TWAITE SHAD (ALOSA FALLAX FALLAX) FROM THE RIVER SEVERN, ENGLAND.

    Full text link
    Year class strength (YCS) was estimated for the 25 year period between 1972 and 1996. The index (YCS) was based on the mean number of six year old female fish caught per tide (1972-1991) in a net fishery at the start of the freshwater phase of their spawning migration, or predicted from juvenile data (1992-1996). The variation in recruitment as measured by the coefficient of variation for the 20 year period (1972 to 1991) was 124.5 %. There was good spawning success in 1976 and 1989 and particularly poor recruitment in the periods 1977 to 1981 and 1985 to 1988. Since 1990 recruitment has remained relatively stable. Water temperature was positively correlated to YCS with mean July temperature explaining the greatest proportion of the variance in YCS (67 %), followed by August (48 %), June (31 %) and October (20 %) ; May and September temperatures did not significantly explain the variation in YCS. Flow in the months June to August were significantly inversely correlated with YCS, with the greatest proportion of the variability explained by August flows (41 %), followed by flows in July (36 %) and June (25 %). Flows in May, September and October were not significantly correlated with YCS. Combining environmental variables in a multiple regression indicated that mean daily temperature between June and August accounted for 77.1 % of the variability in year class strength. The inclusion of flow did not increase significantly the amount of variation explained
    corecore