88 research outputs found
Study of molecular spin-crossover complex Fe(phen)2(NCS)2 thin films
We report on the growth by evaporation under high vacuum of high-quality thin
films of Fe(phen)2(NCS)2 (phen=1,10-phenanthroline) that maintain the expected
electronic structure down to a thickness of 10 nm and that exhibit a
temperature-driven spin transition. We have investigated the current-voltage
characteristics of a device based on such films. From the space charge-limited
current regime, we deduce a mobility of 6.5x10-6 cm2/V?s that is similar to the
low-range mobility measured on the widely studied
tris(8-hydroxyquinoline)aluminium organic semiconductor. This work paves the
way for multifunctional molecular devices based on spin-crossover complexes
Control of defect-mediated tunneling barrier heights in ultrathin MgO films
The impact of oxygen vacancies on local tunneling properties across
rf-sputtered MgO thin films was investigated by optical absorption spectroscopy
and conducting atomic force microscopy. Adding O to the Ar plasma during
MgO growth alters the oxygen defect populations, leading to improved local
tunneling characteristics such as a lower density of current hotspots and a
lower tunnel current amplitude. We discuss a defect-based potential landscape
across ultrathin MgO barriers.Comment: 4 pages, 4 figure
Relationship between the Extent of DNA Damage and Gastritis in Normal and Helicobacter pylori-Infected Patients
Direct observation of a highly spin-polarized organic spinterface at room temperature
Organic semiconductors constitute promising candidates toward large-scale electronic circuits that are entirely spintronics-driven. Toward this goal, tunneling magnetoresistance values above 300% at low temperature suggested the presence of highly spin-polarized device interfaces. However, such spinterfaces have not been observed directly, let alone at room temperature. Thanks to experiments and theory on the model spinterface between phthalocyanine molecules and a Co single crystal surface, we clearly evidence a highly efficient spinterface. Spin-polarised direct and inverse photoemission experiments reveal a high degree of spin polarisation at room temperature at this interface. We measured a magnetic moment on the molecule’s nitrogen p orbitals, which substantiates an ab-initio theoretical description of highly spin-polarised charge conduction across the interface due to differing spinterface formation mechanisms in each spin channel. We propose, through this example, a recipe to engineer simple organic-inorganic interfaces with remarkable spintronic properties that can endure well above room temperature
Magnetism of CoPd self-organized alloy clusters on Au(111)
Magnetic properties of gold-encapsulated CoxPd1-x self-organized nano-clusters on Au(111) are analyzed by x-ray magnetic circular dichroism for x = 0.5, 0.7, and 1.0. The clusters are superparamagnetic with a blocking temperature decreasing with increasing Pd concentration, due to a reduction of the out-of-plane anisotropy strength. No magnetic moment is detected on Pd in these clusters, within the detection limit, contrary to thick CoPd films. Both reduction of anisotropy and vanishing Pd moment are attributed to strain. (C) 2013 AIP Publishing LLC
Fluorinated Phthalocyanine Molecules on Ferromagnetic Cobalt: A Highly Polarized Spinterface
Spin-resolved photoemission spectroscopy experiments are performed on perfluorinated Co-phthalocyanine (F16CoPc) deposited onto ferromagnetic Co(001) to examine how doping (here with fluorine) of an organic semiconductor influences the interfacial electronic properties and whether the formation of highly spin-polarized interface states is possible. It is found that this latter property, initially reported for the nonfluorinated Pc, is also present for the fluorinated system Co/F16CoPc. This result shows that doping an organic semiconductor, which is an important and effective method to tailor the electronic transport properties of the molecules, does not inhibit the presence of a highly polarized spinterface
- …
