651 research outputs found
Observations sur les problèmes juridiques posés par les sanctions des Nations Unies et leur évolution récente
Responsabilité de l'Etat pour violations graves du Droit International et système de sécurité collective des Nations Unies
The codification of the Law of International Watercourses: the draft articles adopted by International Law Commission
Near-unity coupling efficiency of a quantum emitter to a photonic-crystal waveguide
A quantum emitter efficiently coupled to a nanophotonic waveguide constitutes
a promising system for the realization of single-photon transistors,
quantum-logic gates based on giant single-photon nonlinearities, and high
bit-rate deterministic single-photon sources. The key figure of merit for such
devices is the -factor, which is the probability for an emitted single
photon to be channeled into a desired waveguide mode. We report on the
experimental achievement of for a quantum dot
coupled to a photonic-crystal waveguide, corresponding to a single-emitter
cooperativity of . This constitutes a nearly ideal
photon-matter interface where the quantum dot acts effectively as a 1D
"artificial" atom, since it interacts almost exclusively with just a single
propagating optical mode. The -factor is found to be remarkably robust
to variations in position and emission wavelength of the quantum dots. Our work
demonstrates the extraordinary potential of photonic-crystal waveguides for
highly efficient single-photon generation and on-chip photon-photon
interaction
Single-photon nonlinear optics with a quantum dot in a waveguide
Strong nonlinear interactions between photons enable logic operations for
both classical and quantum-information technology. Unfortunately, nonlinear
interactions are usually feeble and therefore all-optical logic gates tend to
be inefficient. A quantum emitter deterministically coupled to a propagating
mode fundamentally changes the situation, since each photon inevitably
interacts with the emitter, and highly correlated many-photon states may be
created . Here we show that a single quantum dot in a photonic-crystal
waveguide can be utilized as a giant nonlinearity sensitive at the
single-photon level. The nonlinear response is revealed from the intensity and
quantum statistics of the scattered photons, and contains contributions from an
entangled photon-photon bound state. The quantum nonlinearity will find
immediate applications for deterministic Bell-state measurements and
single-photon transistors and paves the way to scalable waveguide-based
photonic quantum-computing architectures
Características e controle da podridão "olho de boi" nas maçãs do sul do Brasil.
bitstream/item/55164/1/cir066.pd
Chronic administration of green tea extract to TRAMP mice induces the collapse of Golgi apparatus in prostate secretory cells and results in alterations of protein post-translational processing.
Considering its long latency, prostate cancer (PCa) represents an ideal target for chemoprevention strategies. Green tea extract (GTE) has been proved to be one of the most promising natural substances capable of inhibiting PCa progression in animal models (transgenic adenocarcinoma of mouse prostate), as well as in humans. However, the cellular targets of the GTE action are mostly unknown. The main objective of this work was to investigate whether the endoplasmic reticulum (ER) and the Golgi apparatus (GA), known to be actively involved in sensing stress stimuli and initiating and propagating cell death signalling, may represent the subcellular targets of GTE action. To this end, 42 TRAMP mice were divided into four experimental groups: groups II and IV, received GTE in tap water (0.3 g/100 ml solution) starting at 8 weeks of age and up to the time of sacrifice. Groups I and III were respective age-matched water-fed controls. The animals were sacrificed after 4 weeks (groups I and II) or 40 weeks of treatment (groups II and IV). We also treated TRAMP-C2 cells with GTE (20 µg/ml for 7 days) to check the expression profile of clusterin (CLU), a protein involved in prostate tumourigenesis, extensively processed through ER-GA before being secreted through the plasma membrane. In vivo we found that chronic administration of GTE in TRAMP mice results in collapse of ER and GA in prostate epithelial cells. Consistently, in vitro we found that the mature, fully processed form of CLU, sCLU, is strongly reduced by GTE treatment in TRAMP-C2 cells. Taking into account the sCLU biogenesis dependence on the ER-GA integrity and the proposed anti-apoptotic role of sCLU, the possibility for GTE to counteract PCa progression by interfering with sCLU biogenesis is suggested
Structure-based design and synthesis of antiparasitic pyrrolopyrimidines targeting pteridine reductase 1
The treatment of Human African Trypanosomiasis remains a major unmet health need in sub-Saharan Africa. Approaches involving new molecular targets are important and pteridine reductase 1 (PTR1), an enzyme that reduces dihydrobiopterin in Trypanosoma spp. has been identified as a candidate target and it has been shown previously that substituted pyrrolo[2,3-d]pyrimidines are inhibitors of PTR1 from T. brucei (J. Med. Chem. 2010, 53, 221-229). In this study, 61 new pyrrolo[2,3-d]pyrimidines have been prepared, designed with input from new crystal structures of 23 of these compounds complexed with PTR1, and evaluated in screens for enzyme inhibitory activity against PTR1 and in vitro antitrypanosomal activity. 8 compounds were sufficiently active in both screens to take forward to in vivo evaluation. Thus although evidence for trypanocidal activity in a stage I disease model in mice was obtained, the compounds were too toxic to mice for further development
Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide
Access to the electron spin is at the heart of many protocols for integrated
and distributed quantum-information processing [1-4]. For instance, interfacing
the spin-state of an electron and a photon can be utilized to perform quantum
gates between photons [2,5] or to entangle remote spin states [6-9].
Ultimately, a quantum network of entangled spins constitutes a new paradigm in
quantum optics [1]. Towards this goal, an integrated spin-photon interface
would be a major leap forward. Here we demonstrate an efficient and optically
programmable interface between the spin of an electron in a quantum dot and
photons in a nanophotonic waveguide. The spin can be deterministically prepared
with a fidelity of 96\%. Subsequently the system is used to implement a
"single-spin photonic switch", where the spin state of the electron directs the
flow of photons through the waveguide. The spin-photon interface may enable
on-chip photon-photon gates [2], single-photon transistors [10], and efficient
photonic cluster state generation [11]
- …
