1,263 research outputs found

    Efficient calculation of imaginary time displaced correlation functions in the projector auxiliary field quantum Monte-Carlo algorithm

    Full text link
    The calculation of imaginary time displaced correlation functions with the auxiliary field projector quantum Monte-Carlo algorithm provides valuable insight (such as spin and charge gaps) in the model under consideration. One of the authors and M. Imada [F.F. Assaad and M. Imada, J. Phys. Soc. Jpn. 65 189 (1996).] have proposed a numerically stable method to compute those quantities. Although precise this method is expensive in CPU time. Here, we present an alternative approach which is an order of magnitude quicker, just as precise, and very simple to implement. The method is based on the observation that for a given auxiliary field the equal time Green function matrix, GG, is a projector: G2=GG^2 = G.Comment: 4 papes, 1 figure in eps forma

    Correlation effects in two-dimensional topological insulators

    Full text link
    Topological insulators have become one of the most active research areas in condensed matter physics. This article reviews progress on the topic of electronic correlations effects in the two-dimensional case, with a focus on systems with intrinsic spin-orbit coupling and numerical results. Topics addressed include an introduction to the noninteracting case, an overview of theoretical models, correlated topological band insulators, interaction-driven phase transitions, topological Mott insulators and fractional topological states, correlation effects on helical edge states, and topological invariants of interacting systems.Comment: 33 pages, 20 figures; invited Topical Review (published version

    Metamagnetism and Lifshitz Transitions in Models for Heavy Fermions

    Full text link
    We investigate metamagnetic transitions in models for heavy fermions by considering the doped Kondo lattice model in two dimensions. Results are obtained within the framework of dynamical mean field and dynamical cluster approximations. Universal magnetization curves for different temperatures and Kondo couplings develop upon scaling with the lattice coherence temperature. Furthermore, the coupling of the local moments to the magnetic field is varied to take into account the different Land\'e factors of localized and itinerant electrons. The competition between the lattice coherence scale and the Zeeman energy scale allows for two interpretations of the metamagnetism in heavy fermions: Kondo breakdown or Lifshitz transitions. By tracking the single-particle residue through the transition, we can uniquely conclude in favor of the Lifshitz transition scenario. In this scenario, a quasiparticle band drops below the Fermi energy which leads to a change in topology of the Fermi surface.Comment: 8 pages, 7 figure

    Dynamic Exponent of t-J and t-J-W Model

    Full text link
    Drude weight of optical conductivity is calculated at zero temperature by exact diagonalization for the two-dimensional t-J model with the two-particle term, WW. For the ordinary t-J model with WW=0, the scaling of the Drude weight Dδ2D \propto \delta^2 for small doping concentration δ\delta is obtained, which indicates anomalous dynamic exponent zz=4 of the Mott transition. When WW is switched on, the dynamic exponent recovers its conventional value zz=2. This corresponds to an incoherent-to-coherent transition associated with the switching of the two-particle transfer.Comment: LaTeX, JPSJ-style, 4 pages, 5 eps files, to appear in J. Phys. Soc. Jpn. vol.67, No.6 (1998

    Theory of Electron Differentiation, Flat Dispersion and Pseudogap Phenomena

    Full text link
    Aspects of electron critical differentiation are clarified in the proximity of the Mott insulator. The flattening of the quasiparticle dispersion appears around momenta (π,0)(\pi,0) and (0,π)(0,\pi) on square lattices and determines the criticality of the metal-insulator transition with the suppressed coherence in that momentum region of quasiparticles. Such coherence suppression at the same time causes an instability to the superconducting state if a proper incoherent process is retained. The d-wave pairing interaction is generated from such retained processes without disturbance from the coherent single-particle excitations. Pseudogap phenomena widely observed in the underdoped cuprates are then naturally understood from the mode-mode coupling of d-wave superconducting(dSC) fluctuations with antiferromagnetic ones. When we assume the existence of a strong d-wave pairing force repulsively competing with antiferromagnetic(AFM) fluctuations under the formation of flat and damped single-particle dispersion, we reproduce basic properties of the pseudogap seen in the magnetic resonance, neutron scattering, angle resolved photoemission and tunneling measurements in the cuprates.Comment: 9 pages including 2 figures, to appear in J. Phys. Chem. Solid

    Fermi surface topology of the two-dimensional Kondo lattice model: a dynamical cluster approximation approach

    Full text link
    We report the results of extensive dynamical cluster approximation calculations, based on a quantum Monte Carlo solver, for the two-dimensional Kondo lattice model. Our particular cluster implementation renders possible the simulation of spontaneous antiferromagnetic symmetry breaking. By explicitly computing the single-particle spectral function both in the paramagnetic and antiferromagnetic phases, we follow the evolution of the Fermi surface across this magnetic transition. The results, computed for clusters up to 16 orbitals, show clear evidence for the existence of three distinct Fermi surface topologies. The transition from the paramagnetic metallic phase to the antiferromagnetic metal is continuous; Kondo screening does not break down and we observe a back-folding of the paramagnetic heavy fermion band. Within the antiferromagnetic phase and when the ordered moment becomes large the Fermi surface evolves to one which is adiabatically connected to a Fermi surface where the local moments are frozen in an antiferromagnetic order.Comment: 13 pages, 16 figure
    corecore