39 research outputs found
Thermal properties comparison of hybrid CF/FF and BF/FF cyanate ester-based composites
[EN] Insights within thermal expansion, conductivity, and decomposition dependencies with temperature on symmetrical and
unsymmetrical layered carbon (CF) or basalt (BF) fabrics in combination with flax fibers (FF) were approached. Driven by
commercial application and environmental concerns, the paper draws attention on a modified formula of cyanate ester with
a common epoxy resin under an optimized ratio of 70:30 (vol%) as well as on the hybrid reinforcements stacking
sequences. Synergetic effects were debated in terms of the CF and BF stacking sequences and corresponding volume
fraction followed by comparisons with values predicted by the deployment of hybrid mixtures rules (RoHM/iRoHM). CF
hybrid architectures revealed enhanced effective thermophysical properties over their BF counterparts and both over the
FF-reinforced polymer composite considered as a reference. Thermal conductivities spread between 0.116 and
0.299 W m-1 K-1 from room temperature up to 250 C on all hybrid specimens, giving rise to an insulator character.
Concerning the coefficient of thermal expansion, CF hybrid architectures disclosed values of 1.236 10-6 K-1 and
3.102 10-6 K-1 compared with BF affine exhibiting 4.794 10-6 K-1 and 6.245 10-6 K-1, respectively, with an increase
in their volume fraction.The corresponding author gratefully acknowledges the financial assistance of German Academic Exchange Service-DAAD that enabled and supported the internship with Fraunhofer Research Institution for Polymeric Materials and Composites-PYCO, Germany. Many thanks go to Dr. Christian Dreyer and Dr. Maciej Gwiazda for the resin formula and access to the composite manufacturing technology.Motoc, DL.; Ferrándiz Bou, S.; Balart, R. (2018). Thermal properties comparison of hybrid CF/FF and BF/FF cyanate ester-based composites. Journal of Thermal Analysis and Calorimetry. 133(1):509-518. https://doi.org/10.1007/s10973-018-7222-yS5095181331Assarar M, Zouari W, Sabhi H, Ayad R, Berthelot J-M. Evaluation of the damping of hybrid carbon–flax reinforced composites. Compos Struct. 2015;132:148–54.Duc F, Bourban PE, Plummer CJG, Månson JAE. Damping of thermoset and thermoplastic flax fibre composites. Compos A Appl Sci Manuf. 2014;64:115–23.Saba N, Jawaid M, Alothman OY, Paridah MT. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater. 2016;106:149–59.Tian H, Zhang S, Ge X, Xiang A. Crystallization behaviors and mechanical properties of carbon fiber-reinforced polypropylene composites. J Therm Anal Calorim. 2017;128(3):1495–504.Alvarez V, Rodriguez E, Vázquez A. Thermaldegradation and decomposition of jute/vinylester composites. J Therm Anal Calorim. 2006;85(2):383–9.Manfredi LB, Rodríguez ES, Wladyka-Przybylak M, Vázquez A. Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres. Polym Degrad Stab. 2006;91(2):255–61.Lazko J, Landercy N, Laoutid F, Dangreau L, Huguet MH, Talon O. Flame retardant treatments of insulating agro-materials from flax short fibres. Polym Degrad Stab. 2013;98(5):1043–51.Bar M, Alagirusamy R, Das A. Flame retardant polymer composites. Fibers Polym. 2015;16(4):705–17.Kollia E, Loutas T, Fiamegkou E, Vavouliotis A, Kostopoulos V. Degradation behavior of glass fiber reinforced cyanate ester composites under hydrothermal ageing. Polym Degrad Stab. 2015;121:200–7.Jawaid M, Abdul Khalil HPS. Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohyd Polym. 2011;86(1):1–18.Azwa ZN, Yousif BF, Manalo AC, Karunasena W. A review on the degradability of polymeric composites based on natural fibres. Mater Des. 2013;47:424–42.H-y Cheung, M-p Ho, K-t Lau, Cardona F, Hui D. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos B Eng. 2009;40(7):655–63.Dittenber DB, GangaRao HVS. Critical review of recent publications on use of natural composites in infrastructure. Compos A Appl Sci Manuf. 2012;43(8):1419–29.Faruk O, Bledzki AK, Fink H-P, Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci. 2012;37(11):1552–96.Praveen RS, Jacob S, Murthy CRL, Balachandran P, Rao YVKS. Hybridization of carbon–glass epoxy composites: an approach to achieve low coefficient of thermal expansion at cryogenic temperatures. Cryogenics. 2011;51(2):95–104.Jawaid M, Abdul Khalil HPS, Alattas OS. Woven hybrid biocomposites: dynamic mechanical and thermal properties. Compos A Appl Sci Manuf. 2012;43(2):288–93.Swolfs Y, Gorbatikh L, Verpoest I. Fibre hybridisation in polymer composites: a review. Compos A Appl Sci Manuf. 2014;67:181–200.Rojo E, Alonso MV, Oliet M, Del Saz-Orozco B, Rodriguez F. Effect of fiber loading on the properties of treated cellulose fiber-reinforced phenolic composites. Compos B Eng. 2015;68:185–92.LeGault M. Natural fiber composites: market share, one part at the time. Compos World. 2016;5(2):68–75.Joshi SV, Drzal LT, Mohanty AK, Arora S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos A Appl Sci Manuf. 2004;35(3):371–6.Wambua P, Ivens J, Verpoest I. Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol. 2003;63(9):1259–64.Bertomeu D, García-Sanoguera D, Fenollar O, Boronat T, Balart R. Use of eco-friendly epoxy resins from renewable resources as potential substitutes of petrochemical epoxy resins for ambient cured composites with flax reinforcements. Polym Compos. 2012;33(5):683–92.Alam M, Akram D, Sharmin E, Zafar F, Ahmad S. Vegetable oil based eco-friendly coating materials: a review article. Arab J Chem. 2014;7(4):469–79.Bakare FO, Ramamoorthy SK, Åkesson D, Skrifvars M. Thermomechanical properties of bio-based composites made from a lactic acid thermoset resin and flax and flax/basalt fibre reinforcements. Compos A Appl Sci Manuf. 2016;83:176–84.Pardauil JJR, de Molfetta FA, Braga M, de Souza LKC, Filho GNR, Zamian JR, et al. Characterization, thermal properties and phase transitions of amazonian vegetable oils. J Therm Anal Calorim. 2017;127(2):1221–9.Głowińska E, Datta J, Parcheta P. Effect of sisal fiber filler on thermal properties of bio-based polyurethane composites. J Therm Anal Calorim. 2017;130(1):113–22.Mosiewicki MA, Aranguren MI. A short review on novel biocomposites based on plant oil precursors. Eur Polym J. 2013;49(6):1243–56.Lligadas G, Ronda JC, Galià M, Cádiz V. Renewable polymeric materials from vegetable oils: a perspective. Mater Today. 2013;16(9):337–43.Fombuena V, Sanchez-Nacher L, Samper MD, Juarez D, Balart R. Study of the properties of thermoset materials derived from epoxidized soybean oil and protein fillers. J Am Oil Chem Soc. 2013;90(3):449–57.Pil L, Bensadoun F, Pariset J, Verpoest I. Why are designers fascinated by flax and hemp fibre composites? Compos A Appl Sci Manuf. 2016;83:193–205.Wooster TJ, Abrol S, Hey JM, MacFarlane DR. Thermal, mechanical, and conductivity properties of cyanate ester composites. Compos A Appl Sci Manuf. 2004;35(1):75–82.Mallarino S, Chailan JF, Vernet JL. Glass fibre sizing effect on dynamic mechanical properties of cyanate ester composites I. Single frequency investigations. Eur Polym J. 2005;41(8):1804–11.Sothje D, Dreyer C, Bauer M, editors. Advanced possibilities in thermoset recycling. In: The 3rd international conference on thermosets. 2013; Berlin, Germany.Yuan L, Huang S, Gu A, Liang G, Chen F, Hu Y, et al. A cyanate ester/microcapsule system with low cure temperature and self-healing capacity. Compos Sci Technol. 2013;87:111–7.Czigány T. Special manufacturing and characteristics of basalt fiber reinforced hybrid polypropylene composites: mechanical properties and acoustic emission study. Compos Sci Technol. 2006;66(16):3210–20.Marom G, Fischer S, Tuler FR, Wagner HD. Hybrid effects in composites: conditions for positive or negative effects versus rule-of-mixtures behaviour. J Mater Sci. 1978;13(7):1419–26.Torquato S. Random heterogeneous materials: microstructure and macroscopic properties. New York: Springer; 2002.Cherki A-B, Remy B, Khabbazi A, Jannot Y, Baillis D. Experimental thermal properties characterization of insulating cork–gypsum composite. Constr Build Mater. 2014;54:202–9.Bismarck A, Aranberri-Askargorta I, Springer J, Lampke T, Wielage B, Stamboulis A, et al. Surface characterization of flax, hemp and cellulose fibers; Surface properties and the water uptake behavior. Polym Compos. 2002;23(5):872–94.Motoc Luca D, Ferrandiz Bou S, Balart Gimeno R. Effects of fibre orientation and content on the mechanical, dynamic mechanical and thermal expansion properties of multi-layered glass/carbon fibre-reinforced polymer composites. J Compos Mater. 2014;49(10):1211–1221.CES EduPack. Granta Design; 2013.Monteiro SN, Calado V, Rodriguez RJS, Margem FM. Thermogravimetric behavior of natural fibers reinforced polymer composites—An overview. Mater Sci Eng, A. 2012;557:17–28
Analysis of the mechanical behaviour of flax and glass fabrics-reinforced thermoplastic and thermoset resins
Évaluation des propriétés mécaniques d'un éco-matériau sandwich
National audienceIn this paper, we present the mechanical and dynamic properties of an eco-sandwich material constituted of skins made by unidirectional flax fibers reinforced a green epoxy resin and a core of balsa with different thicknesses. Three-point bending tests have been performed to determine the flexural rigidity of the proposed sandwich and free vibration tests with free-free configuration have been carried out to evaluate its damping properties. Finally, the proposed eco-sandwich properties are compared with those of a sandwich material constituted of a PVC foam core and skins made by unidirectional glass fibers reinforced an epoxy resin.Dans cet article, nous présentons les performances mécaniques et dynamiques d'un éco-matériau sandwich constitué de peaux en résine verte (Green Epoxy) renforcée par des fibres unidirectionnelles (UD) de lin et d'une âme en balsa de différentes épaisseurs. Des essais de flexion 3 points ont été effectués pour déterminer les rigidités de flexion et de cisaillement de cet éco-matériau et des essais de vibration en configuration libre-libre ont été conduits pour évaluer son pouvoir d'amortissement. Enfin, les propriétés de cet éco-sandwich sont comparés à celles d'un autre sandwich constitué d'une âme en mousse de PVC et de peaux en résine époxy renforcée par des fibres UD de verre. Mots-clés : fibres de lin, balsa, éco-matériau sandwich, caractérisation en flexion
Damping analysis in cyclic fatigue loading of sandwich beams with debonding
International audienceThe aim of this study is to investigate the mechanical behaviour of sandwich composite materials with debonding under static and dynamic loadings. These sandwich composites consists of two thin faces composed of glass fibre and epoxy resin bonded to light weight and weaker core material of PVC foams. The tests were conducted in static and cyclic fatigue loading in 3-points bending with various debonding length. Static tests were performed to determine the failure parameters and the caracteristiques used in fatigue tests. The effects of debonding variable length on the stiffness, hysteresis loops and loss factor were studied for various numbers of cycles during cyclic fatigue tests. The results show that the stiffness, hysteresis loop and damping are sensible to debonding length. These properties offer the sensitive indicators of sandwich materials damage during lifetime
Impact de la fatigue et du vieillissement hygrothermique en eau douce sur un composite unidirectionnel verre-époxy
Le présent article contribue à mettre en relief l’impact de la fatigue en traction et du vieillissement naturel en eau douce sur deux composites, verre époxy. Deux séries d’essais ont été mises en place pour distinguer les effets de la fatigue et ceux du vieillissement hygrothermique. Durant la première série, nous avons gardé le nombre de cycles de fatigue constant, fixé à 1000 cycles et nous avons varié les durées d’immersion des matériaux de 100 à 1000 heures. Pour la deuxième série, nous avons varié le nombre de cycles de fatigue de 500 à 2000 cycles et nous avons gardé la durée d’immersion constante, fixée à 1000 heures. Les résultats obtenus nous ont permis de constater que l’effet de la fatigue est plus néfaste pour les deux matériaux que l’effet du vieillissement. De plus, le composite verre sergé est plus résistant que le composite verre unidirectionnel.Mots clés : Verre – Epoxy – Fatigue - Vieillissement hygrothermique – eau douce
Acoustic emission monitoring of damage mechanisms an aramid-epoxy composite after tensile fatigue and aging seawater
International audienceThis paper helps to highlight the impact of tensile fatigue and hydric aging in sea water on a composite based the on aramid taffeta fibers and epoxy resin under acoustic monitoring. For this purpose, laminated test pieces were first stimulated to fatigue in several numbers of cycles(cycles 100-50000) before being immersed in the second place for several times (100 to 1000 h) in sea water (37%). The acoustic monitoring was conducted by three piezoelectric sensors were placed on the surfaces of the specimens during static tests. It allowed us to detect directly the different types of damage caused by fatigue and aging (matrix cracking, delamination and fiber breakage). The results that highlight the effects of fatigue and aging, show that these two parameters reduce the fracture characteristics of the material based on the progressively increasing number of cycles and increase the durations of immersions
Influence of water ageing on mechanical properties and damage events of two reinforced composite materials: Flax–fibres and glass–fibres
International audienceMoisture absorption and durability in water environment are major concerns for natural fibres as reinforcement in composites. This paper presents a study on the influence of water ageing on mechanical properties and damage events of flax–fibre composites, compared with glass–fibre composites. The effects of the immersion treatment on the tensile characteristics, water absorption and acoustic emission (AE) recording were investigated. The water absorption results for the flax–fibre composites show that the evolution appears to be Fickian and the saturated weight gain is 12 times as high that the glass–fibre composites. Decreasing continuously with increasing water immersion time, the tensile modulus and the failure strain of flax–fibre composites are hardly affected by water ageing whereas only the tensile stress is reduced regarding the glass–fibre composites. AE indicate that matrix–fibres interface weakening is the main damage mechanism induced by water ageing for both composites
Sendinimo vandenyje įtaka stiklo ir kevlaro pluošto epoksidinių kompozitų mechaninėms savybėms.
This paper presents the results of experimental in-vestigations of composite materials on the effects of water aging. The experimental investigation was conducted un-der longitudinal tension for different cross-ply laminates constituted of glass fibers, Kevlar fibers and resin epoxy. Static and fatigue properties were investigated in the first stage. Stiffness degradation approach is used to study the mechanical behaviour of composite materials in fatigue tests. The interactions between hydrothermal aging and fatigue damage in composite were studied in the second stage. The static strength and residual stiffness were evalu-ated in static tests after fatigue of specimens at different cycle numbers and aged in tap water
