539 research outputs found
Phase diagram and optical conductivity of La1.8-xEu0.2SrxCuO4
La1.8-xEu0.2SrxCuO4 (LESCO) is the member of the 214 family which exhibits
the largest intervals among the structural, charge ordering (CO), magnetic, and
superconducting transition temperatures. By using new dc transport measurements
and data in the literature we construct the phase diagram of LESCO between x =
0.8 and 0.20. This phase diagram has been further probed in ac, by measuring
the optical conductivity {\sigma}1({\omega}) of three single crystals with x =
0.11, 0.125, and 0.16 between 10 and 300 K in order to associate the
extra-Drude peaks often observed in the 214 family with a given phase. The
far-infrared peak we detect in underdoped LESCO is the hardest among them,
survives up to room temperature and is associated with charge localization
rather than with ordering. At the CO transition for the commensurate doping x =
0.125 instead the extra-Drude peak hardens and a pseudogap opens in
{\sigma}1({\omega}), approximately as wide as the maximum superconducting gap
of LSCO.Comment: 6 pages, 6 figure
Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas
AbstractPolaritons in layered materials—including van der Waals materials—exhibit hyperbolic dispersion and strong field confinement, which makes them highly attractive for applications including optical nanofocusing, sensing and control of spontaneous emission. Here we report a near-field study of polaritonic Fabry–Perot resonances in linear antennas made of a hyperbolic material. Specifically, we study hyperbolic phonon–polaritons in rectangular waveguide antennas made of hexagonal boron nitride (h-BN, a prototypical van der Waals crystal). Infrared nanospectroscopy and nanoimaging experiments reveal sharp resonances with large quality factors around 100, exhibiting atypical modal near-field patterns that have no analogue in conventional linear antennas. By performing a detailed mode analysis, we can assign the antenna resonances to a single waveguide mode originating from the hybridization of hyperbolic surface phonon–polaritons (Dyakonov polaritons) that propagate along the edges of the h-BN waveguide. Our work establishes the basis for the understanding and design of linear waveguides, resonators, sensors and metasurface elements based on hyperbolic materials and metamaterials.</jats:p
Recommended from our members
Molecular insights of p47phox phosphorylation dynamics in the regulation of NADPH oxidase activation and superoxide production
Phagocyte superoxide production by a multicomponent NADPH oxidase is important in host defense against microbial invasion. However inappropriate NADPH oxidase activation causes inflammation. Endothelial cells express NADPH oxidase and endothelial oxidative stress due to prolonged NADPH oxidase activation predisposes many diseases. Discovering the mechanism of NADPH oxidase activation is essential for developing novel treatment of these diseases. The p47phox is a key regulatory subunit of NADPH oxidase; however, due to the lack of full protein structural information, the mechanistic insight of
p47phox phosphorylation in NADPH oxidase activation remains incomplete. Based on crystal structures of three functional domains, we generated a computational structural model of the full p47phox protein. Using a combination of in silico phosphorylation, molecular dynamics simulation and protein/protein docking, we discovered that the C-terminal tail of p47phox is critical for stabilizing its autoinhibited structure. Ser-379 phosphorylation disrupts H-bonds that link the C-terminal tail to the autoinhibitory region (AIR) and the tandem Src homology 3 (SH3) domains, allowing the AIR to undergo phosphorylation to expose the SH3 pocket for p22phox binding. These findings were confirmed by site-directed mutagenesis and gene transfection of p47phox_/_ coronary microvascular cells. Compared with wild-type p47phoxcDNAtransfected cells, the single mutation of S379A completely blocked p47phox membrane translocation, binding to p22phox and endothelial O2 . production in response to acute stimulation of PKC. p47phox C-terminal tail plays a key role in stabilizing intramolecular interactions at rest. Ser-379 phosphorylation is a molecular switch which initiates p47phox conformational changes and NADPH oxidase-dependent superoxide production by cells
Metabolic disorders and cardiovascular risk in HIV-infected patients treated with antiretroviral agents.
The clinical management of HIV-infected individuals is based on highly active antiretroviral combination therapy, which provides significant clinical benefit in most patients, but causes in a high proportion of them a metabolic syndrome that includes body fat redistribution, hypercholesterolemia, hypertriglyceridemia, and insulin resistance. These effects are particularly evident in patients treated with protease inhibitors. It is likely that the metabolic disorders related to anti-HIV treatment will eventually translate into an increased cardiovascular risk in patients submitted to such regimens
Cytotoxic Activity and Composition of Petroleum Ether Extract from Magydaris tomentosa (Desf.) W. D. J. Koch (Apiaceae).
The petroleum ether extract of Magydaris tomentosa flowers (Desf.) W. D. J. Koch has been analyzed by GC-MS. It is mainly constituted by furanocoumarins such as xanthotoxin, xanthotoxol, isopimpinellin, and bergaptene. Other coumarins such as 7-methoxy-8-(2-formyl-2-methylpropyl) coumarin and osthole also occurred. The antiproliferative activity of Magydaris tomentosa flower extract has been evaluated in vitro on murine monocyte/macrophages (J774A.1), human melanoma (A375) and human breast cancer (MCF-7) tumor cell lines, showing a major activity against the latter
Stability mechanisms of a thermophilic laccase probed by molecular dynamics.
Laccases are highly stable, industrially important enzymes capable of oxidizing a large range of substrates. Causes for their stability are, as for other proteins, poorly understood. In this work, multiple-seed molecular dynamics (MD) was applied to a Trametes versicolor laccase in response to variable ionic strengths, temperatures, and glycosylation status. Near-physiological conditions provided excellent agreement with the crystal structure (average RMSD ∼0.92 Å) and residual agreement with experimental B-factors. The persistence of backbone hydrogen bonds was identified as a key descriptor of structural response to environment, whereas solvent-accessibility, radius of gyration, and fluctuations were only locally relevant. Backbone hydrogen bonds decreased systematically with temperature in all simulations (∼9 per 50 K), probing structural changes associated with enthalpy-entropy compensation. Approaching T opt (∼350 K) from 300 K, this change correlated with a beginning "unzipping" of critical β-sheets. 0 M ionic strength triggered partial denucleation of the C-terminal (known experimentally to be sensitive) at 400 K, suggesting a general salt stabilization effect. In contrast, F(-) (but not Cl(-)) specifically impaired secondary structure by formation of strong hydrogen bonds with backbone NH, providing a mechanism for experimentally observed small anion destabilization, potentially remedied by site-directed mutagenesis at critical intrusion sites. N-glycosylation was found to support structural integrity by increasing persistent backbone hydrogen bonds by ∼4 across simulations, mainly via prevention of F(-) intrusion. Hydrogen-bond loss in distinct loop regions and ends of critical β-sheets suggest potential strategies for laboratory optimization of these industrially important enzymes
- …
