64,238 research outputs found
Non-contact temperature measurement of a falling drop
The 105 meter drop tube at NASA-Marshall has been used in a number of experiments to determine the effects of containerless, microgravity processing on the undercooling and solidification behavior of metals and alloys. These experiments have been limited, however, because direct temperature measurement of the falling drops has not been available. Undercooling and nucleation temperatures are calculated from thermophysical properties based on droplet cooling models. In most cases these properties are not well known, particularly in the undercooled state. This results in a large amount of uncertainty in the determination of nucleation temperatures. If temperature measurement can be accomplished then the thermal history of the drops could be well documented. This would lead to a better understanding of the thermophysical and thermal radiative properties of undercooled melts. An effort to measure the temperature of a falling drop is under way. The technique uses two color pyrometry and high speed data acquisition. The approach is presented along with some preliminary data from drop tube experiments. The results from droplet cooling models is compared with noncontact temperature measurements
Containerless low gravity processing of glass forming and immiscible alloys
Under normal one-g conditions immiscible alloys segregate extensively during solidification due to sedimentation of the more dense of the immiscible liquid phases. Immiscible (hypermonotectic) gold-rhodium alloys were processed in the 100 meter drop tube under low gravity, containerless conditions to determine the feasibility of producing dispersed structures. Three alloy compositions were utilized. Alloys containing 10 percent by volume of the gold-rich hypermonotectic phase exhibited a tendency for the gold-rich liquid to wet the outer surface of the samples. This wetting tendency led to extensive segregation in several cases. Alloys containing 80 and 90 percent by volume of the gold-rich phase possessed completely different microstructures from the 10 percent samples when processed under low-g, containerless conditions. Several samples exhibited microstructures consisting of well dispersed 2 to 3 microns diameter rhodium-rich spheres in a gold-rich matrix
Polynomial Cointegration among Stationary Processes with Long Memory
n this paper we consider polynomial cointegrating relationships among
stationary processes with long range dependence. We express the regression
functions in terms of Hermite polynomials and we consider a form of spectral
regression around frequency zero. For these estimates, we establish consistency
by means of a more general result on continuously averaged estimates of the
spectral density matrix at frequency zeroComment: 25 pages, 7 figures. Submitted in August 200
Faint Radio Sources and Star Formation History
Faint extragalactic radio sources provide important information about the
global history of star formation. Sensitive radio observations of the Hubble
Deep Field and other fields have found that sub-mJy radio sources are
predominantly associated with star formation activity rather than AGN. Radio
observations of star forming galaxies have the advantage of being independent
of extinction by dust. We use the FIR-radio correlation to compare the radio
and FIR backgrounds, and make several conclusions about the star forming
galaxies producing the FIR background. We then use the redshift distribution of
faint radio sources to determine the evolution of the radio luminosity
function, and thus estimate the star formation density as a function of
redshift.Comment: 12 pages, 9 figures, latex using texas.sty, to appear in the CD-ROM
Proceedings of the 19th Texas Symposium on Relativistic Astrophysics and
Cosmology, held in Paris, France, Dec. 14-18, 1998. Eds.: J. Paul, T.
Montmerle, and E. Aubourg (CEA Saclay). No changes to paper, just updated
publication info in this commen
Children's suggestibility in relation to their understanding about sources of knowledge
In the experiments reported here, children chose either to maintain their initial belief about an object's identity or to accept the experimenter's contradicting suggestion. Both 3– to 4–year–olds and 4– to 5–year–olds were good at accepting the suggestion only when the experimenter was better informed than they were (implicit source monitoring). They were less accurate at recalling both their own and the experimenter's information access (explicit recall of experience), though they performed well above chance. Children were least accurate at reporting whether their final belief was based on what they were told or on what they experienced directly (explicit source monitoring). Contrasting results emerged when children decided between contradictory suggestions from two differentially informed adults: Three– to 4–year–olds were more accurate at reporting the knowledge source of the adult they believed than at deciding which suggestion was reliable. Decision making in this observation task may require reflective understanding akin to that required for explicit source judgments when the child participates in the task
Critical current of a Josephson junction containing a conical magnet
We calculate the critical current of a
superconductor/ferromagnetic/superconductor (S/FM/S) Josephson junction in
which the FM layer has a conical magnetic structure composed of an in-plane
rotating antiferromagnetic phase and an out-of-plane ferromagnetic component.
In view of the realistic electronic properties and magnetic structures that can
be formed when conical magnets such as Ho are grown with a polycrystalline
structure in thin-film form by methods such as direct current sputtering and
evaporation, we have modeled this situation in the dirty limit with a large
magnetic coherence length (). This means that the electron mean free
path is much smaller than the normalized spiral length which in
turn is much smaller than (with as the length a complete
spiral makes along the growth direction of the FM). In this physically
reasonable limit we have employed the linearized Usadel equations: we find that
the triplet correlations are short ranged and manifested in the critical
current as a rapid oscillation on the scale of . These rapid
oscillations in the critical current are superimposed on a slower oscillation
which is related to the singlet correlations. Both oscillations decay on the
scale of . We derive an analytical solution and also describe a
computational method for obtaining the critical current as a function of the
conical magnetic layer thickness.Comment: Extended version of the published paper. Additional information about
the computational method is included in the appendi
The star-formation history of the universe - an infrared perspective
A simple and versatile parameterized approach to the star formation history
allows a quantitative investigation of the constraints from far infrared and
submillimetre counts and background intensity measurements.
The models include four spectral components: infrared cirrus (emission from
interstellar dust), an M82-like starburst, an Arp220-like starburst and an AGN
dust torus. The 60 m luminosity function is determined for each chosen
rate of evolution using the PSCz redshift data for 15000 galaxies. The
proportions of each spectral type as a function of 60 m luminosity are
chosen for consistency with IRAS and SCUBA colour-luminosity relations, and
with the fraction of AGN as a function of luminosity found in 12 m
samples. The luminosity function for each component at any wavelength can then
be calculated from the assumed spectral energy distributions. With assumptions
about the optical seds corresponding to each component and, for the AGN
component, the optical and near infrared counts can be accurately modelled.
A good fit to the observed counts at 0.44, 2.2, 15, 60, 90, 175 and 850
m can be found with pure luminosity evolution in all 3 cosmological models
investigated: = 1, = 0.3 ( = 0), and
= 0.3, = 0.7.
All 3 models also give an acceptable fit to the integrated background
spectrum. Selected predictions of the models, for example redshift
distributions for each component at selected wavelengths and fluxes, are shown.
The total mass-density of stars generated is consistent with that observed,
in all 3 cosmological models.Comment: 20 pages, 25 figures. Accepted for publication in ApJ. Full details
of models can be found at http://astro.ic.ac.uk/~mrr/countmodel
On the Determination of Star Formation Rates in Evolving Galaxy Populations
The redshift dependence of the luminosity density in certain wavebands (e.g.
UV and H-alpha) can be used to infer the history of star formation in the
populations of galaxies producing this luminosity. This history is a useful
datum in studies of galaxy evolution. It is therefore important to understand
the errors that attend the inference of star formation rate densities from
luminosity densities. This paper explores the self-consistency of star
formation rate diagnostics by reproducing commonly used observational
procedures in a model with known galaxy populations, evolutionary histories and
spectral emission properties. The study reveals a number of potential sources
of error in the diagnostic processes arising from the differential evolution of
different galaxy types. We argue that multi-wavelength observations can help to
reduce these errors.Comment: 13 pages (including 5 encapsulated postscript figures), aastex,
accepted for publication in Ap
Asymptotic behavior of the number of Eulerian orientations of graphs
We consider the class of simple graphs with large algebraic connectivity (the
second-smallest eigenvalue of the Laplacian matrix). For this class of graphs
we determine the asymptotic behavior of the number of Eulerian orientations. In
addition, we establish some new properties of the Laplacian matrix, as well as
an estimate of a conditionality of matrices with the asymptotic diagonal
predominanceComment: arXiv admin note: text overlap with arXiv:1104.304
- …
