30,182 research outputs found

    A Finite Size Scaling Study of Lattice Models in the three-dimensional Ising Universality Class

    Full text link
    We simulate the spin-1/2 Ising model and the Blume-Capel model at various values of the parameter D on the simple cubic lattice. We perform a finite size scaling study of lattices of a linear size up to L=360 to obtain accurate estimates for critical exponents. We focus on values of D, where the amplitudes of leading corrections are small. Furthermore we employ improved observables that have a small amplitude of the leading correction. We obtain nu=0.63002(10), eta=0.03627(10) and omega=0.832(6). We compare our results with those obtained from previous Monte Carlo simulations and high temperature series expansions of lattice models, by using field theoretic methods and experiments.Comment: 25 pages, 6 figures, typos corrected, references added, conclusions extende

    Fracture Mechanics implications for apparent static friction coefficient in contact problems involving slip-weakening laws

    Full text link
    We consider the effect of differing coefficients of static and dynamic friction coefficients on the behaviour of contacts involving microslip. The classic solutions of Cattaneo and Mindlin are unchanged if the transition in coefficients is abrupt, but if it occurs over some small slip distance, the solution has some mathematical similarities with those governing the normal tractions in adhesive contact problems. In particular, if the transition to dynamic slip occurs over a sufficiently small area, we can identify a `JKR' approximation, where the transition region is condensed to a line. A local singularity in shear traction is then predicted, with a stress-intensity factor that is proportional to the the square root of the local contact pressure and to a certain integral of the friction coefficient-slip distance relation. We can also define an equivalent of the `small-scale yielding' criterion, which enables us to assess when the singular solution provides a good approximation. One consequence of the results is that the static coefficient of friction determined from force measurements in experiments is significantly smaller than the value that holds at the microscale.Comment: 6 figure

    Impact of contraception and IVF hormones on metabolic, endocrine, and inflammatory status

    Get PDF
    Assisted reproductive technologies (ART) represent commonly utilized management strategies for infertility with multifactorial causes (including genetically predisposed diseases). Amongst ART, in vitro fertilization (IVF) is the most popular. IVF treatment may predispose the mother to increased risks and complications during pregnancy, and there may be adverse fetal outcomes. Hormonal therapies, including oral contraceptives, may impair glucose and lipid metabolism, and promote insulin resistance and inflammation. IVF treatment involves administration of reproductive hormones, similar in composition but in much higher doses than those used for oral contraception. The provision of IVF reproductive hormones to mice associates with glucose intolerance. In addition, the physiological and hormonal changes of pregnancy can trigger an inflammatory response, and metabolic and endocrine changes. There is controversy regarding the potential effects of IVF hormonal therapies in the promotion of diabetogenic and inflammatory states, additional to those that occur during pregnancy, and which may therefore predispose women with IVF-conceived pregnancies to adverse obstetric outcomes compared with women with spontaneously conceived pregnancies. This review summarizes the limited published evidence regarding the effect of IVF-based fertility therapies on glucose homeostasis, insulin resistance, cardio-metabolic profile, and markers of inflammation

    The uniqueness of the invariant polarisation-tensor field for spin-1 particles in storage rings

    Full text link
    We argue that the invariant tensor field introduced in [1] is unique under the condition that the invariant spin field is unique, and thereby complete that part of the discussion in that paper.Comment: 8 page

    Universal amplitude ratios in the 3D Ising Universality Class

    Full text link
    We compute a number of universal amplitude ratios in the three-dimensional Ising universality class. To this end, we perform Monte Carlo simulations of the improved Blume-Capel model on the simple cubic lattice. For example, we obtain A_+/A_-=0.536(2) and C_+/C_-=4.713(7), where A_+- and C_+- are the amplitudes of the specific heat and the magnetic susceptibility, respectively. The subscripts + and - indicate the high and the low temperature phase, respectively. We compare our results with those obtained from previous Monte Carlo simulations, high and low temperature series expansions, field theoretic methods and experiments.Comment: 18 pages, two figures, typos corrected, discussion on finite size corrections extende

    Solving the puzzle of an unconventional phase transition for a 2d dimerized quantum Heisenberg model

    Full text link
    Motivated by the indication of a new critical theory for the spin-1/2 Heisenberg model with a spatially staggered anisotropy on the square lattice as suggested in \cite{Wenzel08}, we re-investigate the phase transition of this model induced by dimerization using first principle Monte Carlo simulations. We focus on studying the finite-size scaling of ρs12L\rho_{s1} 2L and ρs22L\rho_{s2} 2L, where LL stands for the spatial box size used in the simulations and ρsi\rho_{si} with i{1,2}i \in \{1,2\} is the spin-stiffness in the ii-direction. Remarkably, while we do observe a large correction to scaling for the observable ρs12L\rho_{s1}2L as proposed in \cite{Fritz11}, the data for ρs22L\rho_{s2}2L exhibit a good scaling behavior without any indication of a large correction. As a consequence, we are able to obtain a numerical value for the critical exponent ν\nu which is consistent with the known O(3) result with moderate computational effort. Specifically, the numerical value of ν\nu we determine by fitting the data points of ρs22L\rho_{s2}2L to their expected scaling form is given by ν=0.7120(16)\nu=0.7120(16), which agrees quantitatively with the most accurate known Monte Carlo O(3) result ν=0.7112(5)\nu = 0.7112(5). Finally, while we can also obtain a result of ν\nu from the observable second Binder ratio Q2Q_2 which is consistent with ν=0.7112(5)\nu=0.7112(5), the uncertainty of ν\nu calculated from Q2Q_2 is more than twice as large as that of ν\nu determined from ρs22L\rho_{s2}2L.Comment: 7 figures, 1 table; brief repor

    Flight test techniques for wake-vortex minimization studies

    Get PDF
    Flight test techniques developed for use in a study of wake turbulence and used recently in flight studies of wake minimization methods are discussed. Flow visualization was developed as a technique for qualitatively assessing minimization methods and is required in flight test procedures for making quantitative measurements. The quantitative techniques are the measurement of the upset dynamics of an aircraft encountering the wake and the measurement of the wake velocity profiles. Descriptions of the instrumentation and the data reduction and correlation methods are given
    corecore