8,846 research outputs found

    Central limit approximations for Markov population processes with countably many types

    Full text link
    When modelling metapopulation dynamics, the influence of a single patch on the metapopulation depends on the number of individuals in the patch. Since there is usually no obvious natural upper limit on the number of individuals in a patch, this leads to systems in which there are countably infinitely many possible types of entity. Analogous considerations apply in the transmission of parasitic diseases. In this paper, we prove central limit theorems for quite general systems of this kind, together with bounds on the rate of convergence in an appropriately chosen weighted 1\ell_1 norm.Comment: 24 page

    Towards the Unification of Gravity and other Interactions: What has been Missed?

    Full text link
    Faced with the persisting problem of the unification of gravity with other fundamental interactions we investigate the possibility of a new paradigm, according to which the basic space of physics is a multidimensional space C{\cal C} associated with matter configurations. We consider general relativity in C{\cal C}. In spacetime, which is a 4-dimensional subspace of C{\cal C}, we have not only the 4-dimensional gravity, but also other interactions, just as in Kaluza-Klein theories. We then consider a finite dimensional description of extended objects in terms of the center of mass, area, and volume degrees of freedom, which altogether form a 16-dimensional manifold whose tangent space at any point is Clifford algebra Cl(1,3). The latter algebra is very promising for the unification, and it provides description of fermions.Comment: 11 pages; Talk presented at "First Mediterranean Conference on Classical and Quantum Gravity", Kolymbari, Crete, Greece, 14-18 September 200

    The geometry of the Barbour-Bertotti theories II. The three body problem

    Get PDF
    We present a geometric approach to the three-body problem in the non-relativistic context of the Barbour-Bertotti theories. The Riemannian metric characterizing the dynamics is analyzed in detail in terms of the relative separations. Consequences of a conformal symmetry are exploited and the sectional curvatures of geometrically preferred surfaces are computed. The geodesic motions are integrated. Line configurations, which lead to curvature singularities for N3N\neq 3, are investigated. None of the independent scalars formed from the metric and curvature tensor diverges there.Comment: 16 pages, 2 eps figures, to appear in Classical and Quantum Gravit

    A law of large numbers approximation for Markov population processes with countably many types

    Full text link
    When modelling metapopulation dynamics, the influence of a single patch on the metapopulation depends on the number of individuals in the patch. Since the population size has no natural upper limit, this leads to systems in which there are countably infinitely many possible types of individual. Analogous considerations apply in the transmission of parasitic diseases. In this paper, we prove a law of large numbers for rather general systems of this kind, together with a rather sharp bound on the rate of convergence in an appropriately chosen weighted 1\ell_1 norm.Comment: revised version in response to referee comments, 34 page

    Hydrographic data from R/V endeavor cruise #90

    Get PDF
    The final cruise of the NSF sponsored Warm Core Rings Program studied a Warm Core Ring (WCR) in the Fall of 1982 as it formed from a large northward meander of the Gulf Stream. This ring, known as 82-H or the eighth ring identified in 1982, formed over the New England Seamounts near 39.5 deg N, 65 deg W. Surveys using Expendable Bathythermographs, Conductivity-Temperature-Depth-Oxygen stations and Doppler Current Profiling provide a look at the genesis of a WCR. These measurements reveal that WCR 82-H separated from the Gulf Stream sometime between October 2-5. This ring was a typical WCR with a diameter of about 200 km and speeds in the high velocity core of the 175 cm/sec. Satellite imagery of 82-H following the cruise showed that it drifted WSW in the Slope Water region at almost 9 km/day, had at least one interaction with the Gulf Stream and was last observed on February 8, 1983 at 39 deg N, 72 deg W

    Interacting vector fields in Relativity without Relativity

    Get PDF
    Barbour, Foster and \'{O} Murchadha have recently developed a new framework, called here {\it{the 3-space approach}}, for the formulation of classical bosonic dynamics. Neither time nor a locally Minkowskian structure of spacetime are presupposed. Both arise as emergent features of the world from geodesic-type dynamics on a space of 3-dimensional metric--matter configurations. In fact gravity, the universal light cone and Abelian gauge theory minimally coupled to gravity all arise naturally through a single common mechanism. It yields relativity -- and more -- without presupposing relativity. This paper completes the recovery of the presently known bosonic sector within the 3-space approach. We show, for a rather general ansatz, that 3-vector fields can interact among themselves only as Yang--Mills fields minimally coupled to gravity.Comment: Replaced with final version accepted by Classical and Quantum Gravity (14 pages, no figures

    Strongly coupled lattice gauge theory with dynamical fermion mass generation in three dimensions

    Get PDF
    We investigate the critical behaviour of a three-dimensional lattice \chiU\phi_3 model in the chiral limit. The model consists of a staggered fermion field, a U(1) gauge field (with coupling parameter β\beta) and a complex scalar field (with hopping parameter κ\kappa). Two different methods are used: 1) fits of the chiral condensate and the mass of the neutral unconfined composite fermion to an equation of state and 2) finite size scaling investigations of the Lee-Yang zeros of the partition function in the complex fermion mass plane. For strong gauge coupling (β<1\beta < 1) the critical exponents for the chiral phase transition are determined. We find strong indications that the chiral phase transition is in one universality class in this β\beta interval: that of the three-dimensional Gross-Neveu model with two fermions. Thus the continuum limit of the \chiU\phi_3 model defines here a nonperturbatively renormalizable gauge theory with dynamical mass generation. At weak gauge coupling and small κ\kappa, we explore a region in which the mass in the neutral fermion channel is large but the chiral condensate on finite lattices very small. If it does not vanish in the infinite volume limit, then a continuum limit with massive unconfined fermion might be possible in this region, too.Comment: 27 pages, 16 figure

    Quenched QCD at finite density

    Full text link
    Simulations of quenched QCDQCD at relatively small but {\it nonzero} chemical potential μ\mu on 32×16332 \times 16^3 lattices indicate that the nucleon screening mass decreases linearly as μ\mu increases predicting a critical chemical potential of one third the nucleon mass, mN/3m_N/3, by extrapolation. The meson spectrum does not change as μ\mu increases over the same range, from zero to mπ/2m_\pi/2. Past studies of quenched lattice QCD have suggested that there is phase transition at μ=mπ/2\mu = m_\pi/2. We provide alternative explanations for these results, and find a number of technical reasons why standard lattice simulation techniques suffer from greatly enhanced fluctuations and finite size effects for μ\mu ranging from mπ/2m_\pi/2 to mN/3m_N/3. We find evidence for such problems in our simulations, and suggest that they can be surmounted by improved measurement techniques.Comment: 23 pages, Revte

    The geometry of the Barbour-Bertotti theories I. The reduction process

    Get PDF
    The dynamics of N3N\geq 3 interacting particles is investigated in the non-relativistic context of the Barbour-Bertotti theories. The reduction process on this constrained system yields a Lagrangian in the form of a Riemannian line element. The involved metric, degenerate in the flat configuration space, is the first fundamental form of the space of orbits of translations and rotations (the Leibniz group). The Riemann tensor and the scalar curvature are computed by a generalized Gauss formula in terms of the vorticity tensors of generators of the rotations. The curvature scalar is further given in terms of the principal moments of inertia of the system. Line configurations are singular for N3N\neq 3. A comparison with similar methods in molecular dynamics is traced.Comment: 15 pages, to appear in Classical and Quantum Gravit

    A law of large numbers approximation for Markov population processes with countably many types

    Get PDF
    When modelling metapopulation dynamics, the influence of a single patch on the metapopulation depends on the number of individuals in the patch. Since the population size has no natural upper limit, this leads to systems in which there are countably infinitely many possible types of individual. Analogous considerations apply in the transmission of parasitic diseases. In this paper, we prove a law of large numbers for quite general systems of this kind, together with a rather sharp bound on the rate of convergence in an appropriately chosen weighted ℓ 1 nor
    corecore