150 research outputs found

    Bamboo: A fast descriptor based on AsymMetric pairwise BOOsting

    Get PDF
    A robust hash, or content-based fingerprint, is a succinct representation of the perceptually most relevant parts of a multimedia object. A key requirement of fingerprinting is that elements with perceptually similar content should map to the same fingerprint, even if their bit-level representations are different. In this work we propose BAMBOO (Binary descriptor based on AsymMetric pairwise BOOsting), a binary local descriptor that exploits a combination of content-based fingerprinting techniques and computationally efficient filters (box filters, Haar-like features, etc.) applied to image patches. In particular, we define a possibly large set of filters and iteratively select the most discriminative ones resorting to an asymmetric pair-wise boosting technique. The output values of the filtering process are quantized to one bit, leading to a very compact binary descriptor. Results show that such descriptor leads to compelling results, significantly outperforming binary descriptors having comparable complexity (e.g., BRISK), and approaching the discriminative power of state-of-the-art descriptors which are significantly more complex (e.g., SIFT and BinBoost)

    A visual sensor network for object recognition: Testbed realization

    Get PDF
    This work describes the implementation of an object recognition service on top of energy and resource-constrained hardware. A complete pipeline for object recognition based on the BRISK visual features is implemented on Intel Imote2 sensor devices. The reference implementation is used to assess the performance of the object recognition pipeline in terms of processing time and recognition accuracy

    Coding binary local features extracted from video sequences

    Get PDF
    Local features represent a powerful tool which is exploited in several applications such as visual search, object recognition and tracking, etc. In this context, binary descriptors provide an efficient alternative to real-valued descriptors, due to low computational complexity, limited memory footprint and fast matching algorithms. The descriptor consists of a binary vector, in which each bit is the result of a pairwise comparison between smoothed pixel intensities. In several cases, visual features need to be transmitted over a bandwidth-limited network. To this end, it is useful to compress the descriptor to reduce the required rate, while attaining a target accuracy for the task at hand. The past literature thoroughly addressed the problem of coding visual features extracted from still images and, only very recently, the problem of coding real-valued features (e.g., SIFT, SURF) extracted from video sequences. In this paper we propose a coding architecture specifically designed for binary local features extracted from video content. We exploit both spatial and temporal redundancy by means of intra-frame and inter-frame coding modes, showing that significant coding gains can be attained for a target level of accuracy of the visual analysis task

    Compress-then-analyze vs. analyze-then-compress: Two paradigms for image analysis in visual sensor networks

    Get PDF
    We compare two paradigms for image analysis in vi- sual sensor networks (VSN). In the compress-then-analyze (CTA) paradigm, images acquired from camera nodes are compressed and sent to a central controller for further analysis. Conversely, in the analyze-then-compress (ATC) approach, camera nodes perform visual feature extraction and transmit a compressed version of these features to a central controller. We focus on state-of-the-art binary features which are particularly suitable for resource-constrained VSNs, and we show that the ”winning” paradigm depends primarily on the network conditions. Indeed, while the ATC approach might be the only possible way to perform analysis at low available bitrates, the CTA approach reaches the best results when the available bandwidth enables the transmission of high-quality images

    Rate-energy-accuracy optimization of convolutional architectures for face recognition

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Face recognition systems based on Convolutional Neural Networks (CNNs) or convolutional architectures currently represent the state of the art, achieving an accuracy comparable to that of humans. Nonetheless, there are two issues that might hinder their adoption on distributed battery-operated devices (e.g., visual sensor nodes, smartphones, and wearable devices). First, convolutional architectures are usually computationally demanding, especially when the depth of the network is increased to maximize accuracy. Second, transmitting the output features produced by a CNN might require a bitrate higher than the one needed for coding the input image. Therefore, in this paper we address the problem of optimizing the energy-rate-accuracy characteristics of a convolutional architecture for face recognition. We carefully profile a CNN implementation on a Raspberry Pi device and optimize the structure of the neural network, achieving a 17-fold speedup without significantly affecting recognition accuracy. Moreover, we propose a coding architecture custom-tailored to features extracted by such model. (C) 2015 Elsevier Inc. All rights reserved.Face recognition systems based on Convolutional Neural Networks (CNNs) or convolutional architectures currently represent the state of the art, achieving an accuracy comparable to that of humans. Nonetheless, there are two issues that might hinder their a36142148CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)sem informação2013/11359-0sem informaçã

    Briskola: BRISK optimized for low-power ARM architectures

    Get PDF

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Trajectories of learning approaches during a full medical curriculum: impact on clinical learning outcomes.

    Get PDF
    Background No consensus exists on whether medical students develop towards more deep (DA) or surface learning approaches (SA) during medical training and how this impacts learning outcomes. We investigated whether subgroups with different trajectories of learning approaches in a medical students’ population show different long-term learning outcomes. Methods Person-oriented growth curve analyses on a prospective cohort of 269 medical students (Mage=21years, 59 % females) traced subgroups according to their longitudinal DA/SA profile across academic years 1, 2, 3 and 5. Post-hoc analyses tested differences in academic performance between subgroups throughout the 6-year curriculum until the national high-stakes licensing exam certifying the undergraduate medical training. Results Two longitudinal trajectories emerged: surface-oriented (n = 157; 58 %), with higher and increasing levels of SA and lower and decreasing levels of DA; and deep-oriented (n = 112; 42 %), with lower and stable levels of SA and higher but slightly decreasing levels of DA. Post hoc analyses showed that from the beginning of clinical training, deep-oriented students diverged towards better learning outcomes in comparison with surface-oriented students. Conclusions Medical students follow different trajectories of learning approaches during a 6-year medical curriculum. Deep-oriented students are likely to achieve better clinical learning outcomes than surface-oriented students
    corecore