176 research outputs found
Thoracic Ultrasound - EFSUMB Training Recommendations, a position paper
A wide range of medical specialists increasingly use thoracic ultrasound and transthoracic ultrasound-guided interventions in their clinical practice. To ensure high quality and standardized practice across specialties, this position paper of the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) describes the training requirements for thoracic ultrasound. The recommendations follow the three EFSUMB competency levels for medical ultrasound practice. Level 1 describes the skills required to perform basic thoracic ultrasound examinations and basic interventions independently, level 2 includes more advanced transthoracic ultrasound diagnostics and guided interventions, while level 3 involves the practice of high-level thoracic ultrasound and use of advanced technologies. Previously, a predefined minimum number of ultrasound examinations has been used to determine competence, but in recent years, a general shift towards competency-based training and assessment has been implemented. For each EFSUMB level, we outline the theoretical knowledge and practical skills needed for clinical practice
Giant serous cystadenoma arising from an accessory ovary in a morbidly obese 11-year-old girl: a case report
<p>Abstract</p> <p>Introduction</p> <p>Ectopic ovarian tissue is an unusual entity, especially if it is an isolated finding thought to be of embryological origin.</p> <p>Case presentation</p> <p>An 11-year-old, morbidly obese female presented with left flank pain, nausea, and irregular menses. Various diagnostic procedures suggested a large ovarian cyst, and surgical resection was performed.</p> <p>Conclusion</p> <p>Histologically, the resected mass was not of tubal origin as suspected, but a serous cystadenoma arising from ovarian tissue. The patient's two normal, eutopic ovaries were completely uninvolved and unaffected. A tumor arising from ectopic ovarian tissue of embryological origin seems the most likely explanation. We suggest refining the descriptive nomenclature so as to more precisely characterize the various presentations of ovarian ectopia.</p
Hypthesis and theory
Seabirds are amongst the most mobile of all animal species and spend large amounts of their lives at sea. They cross vast areas of ocean that appear superficially featureless, and our understanding of the mechanisms that they use for navigation remains incomplete, especially in terms of available cues. In particular, several large-scale navigational tasks, such as homing across thousands of kilometers to breeding sites, are not fully explained by visual, olfactory or magnetic stimuli. Low-frequency inaudible sound, i.e., infrasound, is ubiquitous in the marine environment. The spatio-temporal consistency of some components of the infrasonic wavefield, and the sensitivity of certain bird species to infrasonic stimuli, suggests that infrasound may provide additional cues for seabirds to navigate, but this remains untested. Here, we propose a framework to explore the importance of infrasound for navigation. We present key concepts regarding the physics of infrasound and review the physiological mechanisms through which infrasound may be detected and used. Next, we propose three hypotheses detailing how seabirds could use information provided by different infrasound sources for navigation as an acoustic beacon, landmark, or gradient. Finally, we reflect on strengths and limitations of our proposed hypotheses, and discuss several directions for future work. In particular, we suggest that hypotheses may be best tested by combining conceptual models of navigation with empirical data on seabird movements and in-situ infrasound measurements
Uniting statistical and individual-based approaches for animal movement modelling
<div><p>The dynamic nature of their internal states and the environment directly shape animals' spatial behaviours and give rise to emergent properties at broader scales in natural systems. However, integrating these dynamic features into habitat selection studies remains challenging, due to practically impossible field work to access internal states and the inability of current statistical models to produce dynamic outputs. To address these issues, we developed a robust method, which combines statistical and individual-based modelling. Using a statistical technique for forward modelling of the IBM has the advantage of being faster for parameterization than a pure inverse modelling technique and allows for robust selection of parameters. Using GPS locations from caribou monitored in Québec, caribou movements were modelled based on generative mechanisms accounting for dynamic variables at a low level of emergence. These variables were accessed by replicating real individuals' movements in parallel sub-models, and movement parameters were then empirically parameterized using Step Selection Functions. The final IBM model was validated using both k-fold cross-validation and emergent patterns validation and was tested for two different scenarios, with varying hardwood encroachment. Our results highlighted a functional response in habitat selection, which suggests that our method was able to capture the complexity of the natural system, and adequately provided projections on future possible states of the system in response to different management plans. This is especially relevant for testing the long-term impact of scenarios corresponding to environmental configurations that have yet to be observed in real systems.</p></div
Crystal Structure of the PAC1R Extracellular Domain Unifies a Consensus Fold for Hormone Recognition by Class B G-Protein Coupled Receptors
Pituitary adenylate cyclase activating polypeptide (PACAP) is a member of the PACAP/glucagon family of peptide hormones, which controls many physiological functions in the immune, nervous, endocrine, and muscular systems. It activates adenylate cyclase by binding to its receptor, PAC1R, a member of class B G-protein coupled receptors (GPCR). Crystal structures of a number of Class B GPCR extracellular domains (ECD) bound to their respective peptide hormones have revealed a consensus mechanism of hormone binding. However, the mechanism of how PACAP binds to its receptor remains controversial as an NMR structure of the PAC1R ECD/PACAP complex reveals a different topology of the ECD and a distinct mode of ligand recognition. Here we report a 1.9 Å crystal structure of the PAC1R ECD, which adopts the same fold as commonly observed for other members of Class B GPCR. Binding studies and cell-based assays with alanine-scanned peptides and mutated receptor support a model that PAC1R uses the same conserved fold of Class B GPCR ECD for PACAP binding, thus unifying the consensus mechanism of hormone binding for this family of receptors
Delineating the Factors and Cellular Mechanisms Involved in the Survival of Cerebellar Granule Neurons
Cerebellar granule neurons (CGNs) constitute the most abundant neuronal population in the mammalian brain. Their postnatal generation and the feasibility to induce their apoptotic death in vitro make them an excellent model to study the effect of several neurotransmitters and neurotrophins. Here, we first review which factors are involved in the generation and proliferation of CGNs in the external granule layer (EGL) and in the regulation of their differentiation and migration to internal granule layer (IGL). Special attention was given to the role of several neurotrophins and the NMDA subtype of glutamate receptor. Then, using the paradigm of potassium deprivation in cultured CGNs, we address several extracellular factors that promote the survival of CGNs, with particular emphasis on the cellular mechanisms. The role of specific protein kinases leading to the regulation of transcription factors and recent data involving the small G protein family is also discussed. Finally, the participation of some members of Bcl-2 family and the inhibition of mitochondria-related apoptotic pathway is also considered. Altogether, these studies evidence that CGNs are a key model to understand the development and the survival of neuronal population
Navigating through the r packages for movement
The advent of miniaturized biologging devices has provided ecologists with unprecedented opportunities to record animal movement across scales, and led to the collection of ever-increasing quantities of tracking data. In parallel, sophisticated tools have been developed to process, visualize and analyse tracking data; however, many of these tools have proliferated in isolation, making it challenging for users to select the most appropriate method for the question in hand. Indeed, within the r software alone, we listed 58 packages created to deal with tracking data or 'tracking packages'. Here, we reviewed and described each tracking package based on a workflow centred around tracking data (i.e. spatio-temporal locations (x, y, t)), broken down into three stages: pre-processing, post-processing and analysis, the latter consisting of data visualization, track description, path reconstruction, behavioural pattern identification, space use characterization, trajectory simulation and others. Supporting documentation is key to render a package accessible for users. Based on a user survey, we reviewed the quality of packages' documentation and identified 11 packages with good or excellent documentation. Links between packages were assessed through a network graph analysis. Although a large group of packages showed some degree of connectivity (either depending on functions or suggesting the use of another tracking package), one third of the packages worked in isolation, reflecting a fragmentation in the r movement-ecology programming community. Finally, we provide recommendations for users when choosing packages, and for developers to maximize the usefulness of their contribution and strengthen the links within the programming community
- …
