1,195 research outputs found
The importance of initial-final state correlations for the formation of fragments in heavy ion collisions
Using quantum molecular dynamics simulations, we investigate the formation of
fragments in symmetric reactions between beam energies of E=30AMeV and 600AMeV.
After a comparison with existing data we investigate some observables relevant
to tackle equilibration: dsigma/dErat, the double differential cross section
dsigma/pt.dpz.dpt,... Apart maybe from very energetic E>400AMeV and very
central reactions, none of our simulations gives evidence that the system
passes through a state of equilibrium. Later, we address the production
mechanisms and find that, whatever the energy, nucleons finally entrained in a
fragment exhibit strong initial-final state correlations, in coordinate as well
as in momentum space. At high energy those correlations resemble the ones
obtained in the participant-spectator model. At low energy the correlations are
equally strong, but more complicated; they are a consequence of the Pauli
blocking of the nucleon-nucleon collisions, the geometry, and the excitation
energy. Studying a second set of time-dependent variables (radii,
densities,...), we investigate in details how those correlations survive the
reaction especially in central reactions where the nucleons have to pass
through the whole system. It appears that some fragments are made of nucleons
which were initially correlated, whereas others are formed by nucleons
scattered during the reaction into the vicinity of a group of previously
correlated nucleons.Comment: 45 pages text + 20 postscript figures Accepted for publication in
Physical Review
Detectability of dirty dust grains in brown dwarf atmospheres
Dust clouds influence the atmospheric structure of brown dwarfs, and they
affect the heat transfer and change the gas-phase chemistry. However, the
physics of their formation and evolution is not well understood. In this
letter, we predict dust signatures and propose a potential observational test
of the physics of dust formation in brown dwarf atmosphere based on the
spectral features of the different solid components predicted by dust formation
theory. A momentum method for the formation of dirty dust grains (nucleation,
growth, evaporation, drift) is used in application to a static brown dwarf
atmosphere structure to compute the dust grain properties, in particular the
heterogeneous grain composition and the grain size. Effective medium and Mie
theory are used to compute the extinction of these spherical grains. Dust
formation results in grains whose composition differs from that of grains
formed at equilibrium. Our kinetic model predicts that solid amorphous SiO2[s]
(silica) is one of the most abundant solid component followed by amorphous
MgSiO4[s] and MgSiO3[s], while SiO2[s] is absent in equilibrium models
because it is a metastable solid. Solid amorphous SiO2[s] possesses a strong
broad absorption feature centered at 8.7mum, while amorphous
Mg2SiO4[s]/MgSiO3[s] absorb at 9.7mum beside other absorption features at
longer wavelength. Those features at lambda < 15mum are detectable in
absorption if grains are small (radius < 0.2mum) in the upper atmosphere as
suggested by our model. We suggest that the detection of a feature at 8.7mum in
deep infrared spectra could provide evidence for non-equilibrium dust formation
that yields grains composed of metastable solids in brown dwarf atmospheres.
This feature will shift towards 10mum and broaden if silicates (e.g. fosterite)
are much more abundant.Comment: A&A Letter, accepte
The HHID syndrome of hypertrichosis, hyperkeratosis, abnormal corpus callosum, intellectual disability, and minor anomalies is caused by mutations in ARID1B
Non peer reviewe
Mid-Infrared Imaging and Modelling of the Dust Shell around Post-AGB star HD 187885 (IRAS 19500-1709)
We present 10 and 20 micron images of IRAS 19500-1709 taken with the
mid-infrared camera, OSCIR, mounted on the Gemini North Telescope. We use a 2-D
dust radiation transport code to fit the spectral energy distribution from UV
to sub-mm wavelengths and to simulate the images.Comment: 4 pages, 5 figures. To appear in "Asymmetric Planetary Nebulae III",
eds. M.Meixner, J.Kastner, N.Soker & B.Balick. 2004, ASP Conference Serie
Breakup Density in Spectator Fragmentation
Proton-proton correlations and correlations of protons, deuterons and tritons
with alpha particles from spectator decays following 197Au + 197Au collisions
at 1000 MeV per nucleon have been measured with two highly efficient detector
hodoscopes. The constructed correlation functions, interpreted within the
approximation of a simultaneous volume decay, indicate a moderate expansion and
low breakup densities, similar to assumptions made in statistical
multifragmentation models.
PACS numbers: 25.70.Pq, 21.65.+f, 25.70.Mn, 25.75.GzComment: 11 pages, LaTeX with 3 included figures; Also available from
http://www-kp3.gsi.de/www/kp3/aladin_publications.htm
Break-up stage restoration in multifragmentation reactions
In the case of Xe+Sn at 32 MeV/nucleon multifragmentation reaction break-up
fragments are built-up from the experimentally detected ones using evaluations
of light particle evaporation multiplicities which thus settle fragment
internal excitation. Freeze-out characteristics are extracted from experimental
kinetic energy spectra under the assumption of full decoupling between fragment
formation and energy dissipated in different degrees of freedom. Thermal
kinetic energy is determined uniquely while for freeze-out volume - collective
energy a multiple solution is obtained. Coherence between the solutions of the
break-up restoration algorithm and the predictions of a multifragmentation
model with identical definition of primary fragments is regarded as a way to
select the true value. The broad kinetic energy spectrum of He is
consistent with break-up genesis of this isotope.Comment: 17 pages, 5 figure
The effects of disk and dust structure on observed polarimetric images of protoplanetary disks
Imaging polarimetry is a powerful tool for imaging faint circumstellar
material. For a correct analysis of observations we need to fully understand
the effects of dust particle parameters, as well as the effects of the
telescope, atmospheric seeing, and assumptions about the data reduction and
processing of the observed signal. Here we study the major effects of dust
particle structure, size-dependent grain settling, and instrumental properties.
We performed radiative transfer modeling using different dust particle models
and disk structures. To study the influence of seeing and telescope diffraction
we ran the models through an instrument simulator for the ExPo dual-beam
imaging polarimeter mounted at the 4.2m William Herschel Telescope (WHT).
Particle shape and size have a strong influence on the brightness and
detectability of the disks. In the simulated observations, the central
resolution element also contains contributions from the inner regions of the
protoplanetary disk besides the unpolarized central star. This causes the
central resolution element to be polarized, making simple corrections for
instrumental polarization difficult. This effect strongly depends on the
spatial resolution, so adaptive optics systems are needed for proper
polarization calibration. We find that the commonly employed homogeneous sphere
model gives results that differ significantly from more realistic models. For a
proper analysis of the wealth of data available now or in the near future, one
must properly take the effects of particle types and disk structure into
account. The observed signal depends strongly on the properties of these more
realistic models, thus providing a potentially powerful diagnostic. We conclude
that it is important to correctly understand telescope depolarization and
calibration effects for a correct interpretation of the degree of polarization.Comment: Accepted for publication in A&
Dust and the spectral energy distribution of the OH/IR star OH 127.8+0.0: Evidence for circumstellar metallic iron
We present a fit to the spectral energy distribution of OH 127.8+0.0, a
typical asymptotic giant branch star with an optically thick circumstellar dust
shell. The fit to the dust spectrum is achieved using non-spherical grains
consisting of metallic iron, amorphous and crystalline silicates and water ice.
Previous similar attempts have not resulted in a satisfactory fit to the
observed spectral energy distributions, mainly because of an apparent lack of
opacity in the 3--8 micron region of the spectrum. Non-spherical metallic iron
grains provide an identification for the missing source of opacity in the
near-infrared. Using the derived dust composition, we have calculated spectra
for a range of mass-loss rates in order to perform a consistency check by
comparison with other evolved stars. The L-[12 micron] colours of these models
correctly predict the mass-loss rate of a sample of AGB stars, strengthening
our conclusion that the metallic iron grains dominate the near-infrared flux.
We discuss a formation mechanism for non-spherical metallic iron grains.Comment: 10 pages, 6 figures, accepted for publication by A&
Recent Advances in Imprinting Disorders.
Imprinting disorders (ImpDis) are a group of currently 12 congenital diseases with common underlying (epi)genetic etiologies and overlapping clinical features affecting growth, development and metabolism. In the last years it has emerged that ImpDis are characterized by the same types of mutations and epimutations, i.e. uniparental disomies, copy number variations, epimutations, and point mutations. Each ImpDis is associated with a specific imprinted locus, but the same imprinted region can be involved in different ImpDis. Additionally, even the same aberrant methylation patterns are observed in different phenotypes. As some ImpDis share clinical features, clinical diagnosis is difficult in some cases. The advances in molecular and clinical diagnosis of ImpDis help to circumvent these issues, and they are accompanied by an increasing understanding of the pathomechanism behind them. As these mechanisms have important roles for the etiology of other common conditions, the results in ImpDis research have a wider effect beyond the borders of ImpDis. For patients and their families, the growing knowledge contributes to a more directed genetic counseling of the families and personalized therapeutic approaches.COST (BM1208), Bundesministerium für Bildung und Forschung (Network ‘Imprinting Diseases’, 01GM1513B), German Ministry of research and education (01GM1513B)This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1111/cge.1282
Cosmic-ray strangelets in the Earth's atmosphere
If strange quark matter is stable in small lumps, we expect to find such
lumps, called ``strangelets'', on Earth due to a steady flux in cosmic rays.
Following recent astrophysical models, we predict the strangelet flux at the
top of the atmosphere, and trace the strangelets' behavior in atmospheric
chemistry and circulation. We show that several strangelet species may have
large abundances in the atmosphere; that they should respond favorably to
laboratory-scale preconcentration techniques; and that they present promising
targets for mass spectroscopy experiments.Comment: 28 pages, 4 figures, revtex
- …
