606 research outputs found

    PENGEMBANGAN KEMAMPUAN PROBLEM SOLVING MELALUI PEMBELAJARAN TOPIK OPTIKA FISIS BAGI MAHASISRVA CALON GURU FRISIKA

    Get PDF
    Traumatic brain injury (TBI) is a common cause of death and disability, worldwide. Early determination of injury severity is essential to improve care. Neurofilament light (NF-L) has been introduced as a marker of neuroaxonal injury in neuroinflammatory/-degenerative diseases. In this study we determined the predictive power of serum (s-) and cerebrospinal fluid (CSF-) NF-L levels towards outcome, and explored their potential correlation to diffuse axonal injury (DAI). A total of 182 patients suffering from TBI admitted to the neurointensive care unit at a level 1 trauma center were included. S-NF-L levels were acquired, together with S100B and neuron-specific enolase (NSE). CSF-NF-L was measured in a subcohort (n = 84) with ventriculostomies. Clinical and neuro-radiological parameters, including computerized tomography (CT) and magnetic resonance imaging, were included in the analyses. Outcome was assessed 6 to 12 months after injury using the Glasgow Outcome Score (1-5). In univariate proportional odds analyses mean s-NF-L, -S100B and -NSE levels presented a pseudo-R-2 Nagelkerke of 0.062, 0.214 and 0.074 in correlation to outcome, respectively. In a multivariate analysis, in addition to a model including core parameters (pseudo-R-2 0.33 towards outcome; Age, Glasgow Coma Scale, pupil response, Stockholm CT score, abbreviated injury severity score, S100B), S-NF-L yielded an extra 0.023 pseudo-R-2 and a significantly better model (p = 0.006) No correlation between DAI or CT assessed-intracranial damage and NF-L was found. Our study thus demonstrates that SNF-L correlates to TBI outcome, even if used in models with S100B, indicating an independent contribution to the prediction, perhaps by reflecting different pathophysiological processes, not possible to monitor using conventional neuroradiology. Although we did not find a predictive value of NF-L for DAI, this cannot be completely excluded. We suggest furthe

    Intracranial Pressure Monitoring: Invasive versus Non-Invasive Methods—A Review

    Get PDF
    Monitoring of intracranial pressure (ICP) has been used for decades in the fields of neurosurgery and neurology. There are multiple techniques: invasive as well as noninvasive. This paper aims to provide an overview of the advantages and disadvantages of the most common and well-known methods as well as assess whether noninvasive techniques (transcranial Doppler, tympanic membrane displacement, optic nerve sheath diameter, CT scan/MRI and fundoscopy) can be used as reliable alternatives to the invasive techniques (ventriculostomy and microtransducers). Ventriculostomy is considered the gold standard in terms of accurate measurement of pressure, although microtransducers generally are just as accurate. Both invasive techniques are associated with a minor risk of complications such as hemorrhage and infection. Furthermore, zero drift is a problem with selected microtransducers. The non-invasive techniques are without the invasive methods' risk of complication, but fail to measure ICP accurately enough to be used as routine alternatives to invasive measurement. We conclude that invasive measurement is currently the only option for accurate measurement of ICP

    Complement component 3 (C3) expression in the hippocampus after excitotoxic injury: role of C/EBPβ

    Get PDF
    [Background] The CCAAT/enhancer-binding protein β (C/EBPβ) is a transcription factor implicated in the control of proliferation, differentiation, and inflammatory processes mainly in adipose tissue and liver; although more recent results have revealed an important role for this transcription factor in the brain. Previous studies from our laboratory indicated that CCAAT/enhancer-binding protein β is implicated in inflammatory process and brain injury, since mice lacking this gene were less susceptible to kainic acid-induced injury. More recently, we have shown that the complement component 3 gene (C3) is a downstream target of CCAAT/enhancer-binding protein β and it could be a mediator of the proinflammatory effects of this transcription factor in neural cells.[Methods] Adult male Wistar rats (8–12 weeks old) were used throughout the study. C/EBPβ+/+ and C/EBPβ–/– mice were generated from heterozygous breeding pairs. Animals were injected or not with kainic acid, brains removed, and brain slices containing the hippocampus analyzed for the expression of both CCAAT/enhancer-binding protein β and C3.[Results] In the present work, we have further extended these studies and show that CCAAT/enhancer-binding protein β and C3 co-express in the CA1 and CA3 regions of the hippocampus after an excitotoxic injury. Studies using CCAAT/enhancer-binding protein β knockout mice demonstrate a marked reduction in C3 expression after kainic acid injection in these animals, suggesting that indeed this protein is regulated by C/EBPβ in the hippocampus in vivo.[Conclusions] Altogether these results suggest that CCAAT/enhancer-binding protein β could regulate brain disorders, in which excitotoxic and inflammatory processes are involved, at least in part through the direct regulation of C3.This work was supported by MINECO, Grant SAF2014-52940-R and partially financed with FEDER funds. CIBERNED is funded by the Instituto de Salud Carlos III. JAM-G was supported by CIBERNED. We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).Peer reviewe

    The role of the complement system in traumatic brain injury: a review

    Get PDF
    Traumatic brain injury (TBI) is an important cause of disability and mortality in the western world. While the initial injury sustained results in damage, it is the subsequent secondary cascade that is thought to be the significant determinant of subsequent outcomes. The changes associated with the secondary injury do not become irreversible until some time after the start of the cascade. This may present a window of opportunity for therapeutic interventions aiming to improve outcomes subsequent to TBI. A prominent contributor to the secondary injury is a multifaceted inflammatory reaction. The complement system plays a notable role in this inflammatory reaction; however, it has often been overlooked in the context of TBI secondary injury. The complement system has homeostatic functions in the uninjured central nervous system (CNS), playing a part in neurodevelopment as well as having protective functions in the fully developed CNS, including protection from infection and inflammation. In the context of CNS injury, it can have a number of deleterious effects, evidence for which primarily comes not only from animal models but also, to a lesser extent, from human post-mortem studies. In stark contrast to this, complement may also promote neurogenesis and plasticity subsequent to CNS injury. This review aims to explore the role of the complement system in TBI secondary injury, by examining evidence from both clinical and animal studies. We examine whether specific complement activation pathways play more prominent roles in TBI than others. We also explore the potential role of complement in post-TBI neuroprotection and CNS repair/regeneration. Finally, we highlight the therapeutic potential of targeting the complement system in the context of TBI and point out certain areas on which future research is needed

    О сущности языковой компетенции

    Get PDF
    В статье даётся характеристика сущностных сторон языковой компетенции как био и социального и интеллектуального феномена.У статті подається характеристика сутнісних сторін мовної компетенції як біо та соціального та інтелектуального феномену.The characteristics of essential aspects of language competency as bio- and social and intellectual phenomenon is given in the article

    Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The combination of diffuse brain injury with a hypoxic insult is associated with poor outcomes in patients with traumatic brain injury. In this study, we investigated the impact of post-traumatic hypoxia in amplifying secondary brain damage using a rat model of diffuse traumatic axonal injury (TAI). Rats were examined for behavioral and sensorimotor deficits, increased brain production of inflammatory cytokines, formation of cerebral edema, changes in brain metabolism and enlargement of the lateral ventricles.</p> <p>Methods</p> <p>Adult male Sprague-Dawley rats were subjected to diffuse TAI using the Marmarou impact-acceleration model. Subsequently, rats underwent a 30-minute period of hypoxic (12% O<sub>2</sub>/88% N<sub>2</sub>) or normoxic (22% O<sub>2</sub>/78% N<sub>2</sub>) ventilation. Hypoxia-only and sham surgery groups (without TAI) received 30 minutes of hypoxic or normoxic ventilation, respectively. The parameters examined included: 1) behavioural and sensorimotor deficit using the Rotarod, beam walk and adhesive tape removal tests, and voluntary open field exploration behavior; 2) formation of cerebral edema by the wet-dry tissue weight ratio method; 3) enlargement of the lateral ventricles; 4) production of inflammatory cytokines; and 5) real-time brain metabolite changes as assessed by microdialysis technique.</p> <p>Results</p> <p>TAI rats showed significant deficits in sensorimotor function, and developed substantial edema and ventricular enlargement when compared to shams. The additional hypoxic insult significantly exacerbated behavioural deficits and the cortical production of the pro-inflammatory cytokines IL-6, IL-1β and TNF but did not further enhance edema. TAI and particularly TAI+Hx rats experienced a substantial metabolic depression with respect to glucose, lactate, and glutamate levels.</p> <p>Conclusion</p> <p>Altogether, aggravated behavioural deficits observed in rats with diffuse TAI combined with hypoxia may be induced by enhanced neuroinflammation, and a prolonged period of metabolic dysfunction.</p

    A random forest approach to estimate daily particulate matter, nitrogen dioxide, and ozone at fine spatial resolution in Sweden

    Get PDF
    Air pollution is one of the leading causes of mortality worldwide. An accurate assessment of its spatial and temporal distribution is mandatory to conduct epidemiological studies able to estimate long-term (e.g., annual) and short-term (e.g., daily) health effects. While spatiotemporal models for particulate matter (PM) have been developed in several countries, estimates of daily nitrogen dioxide (NO 2 ) and ozone (O 3 ) concentrations at high spatial resolution are lacking, and no such models have been developed in Sweden. We collected data on daily air pollutant concentrations from routine monitoring networks over the period 2005-2016 and matched them with satellite data, dispersion models, meteorological parameters, and land-use variables. We developed a machine-learning approach, the random forest (RF), to estimate daily concentrations of PM 10 (PM<10 microns), PM 2.5 (PM<2.5 microns), PM 2.5-10 (PM between 2.5 and 10 microns), NO 2 , and O 3 for each squared kilometer of Sweden over the period 2005-2016. Our models were able to describe between 64% (PM 10 ) and 78% (O 3 ) of air pollutant variability in held-out observations, and between 37% (NO 2 ) and 61% (O 3 ) in held-out monitors, with no major differences across years and seasons and better performance in larger cities such as Stockholm. These estimates will allow to investigate air pollution effects across the whole of Sweden, including suburban and rural areas, previously neglected by epidemiological investigation

    Genome-Wide Interaction Analysis of Air Pollution Exposure and Childhood Asthma with Functional Follow-up

    Get PDF
    Rationale: The evidence supporting an association between traffic-related air pollution exposure and incident childhood asthma is inconsistent and may depend on genetic factors. Objectives: To identify gene–environment interaction effects on childhood asthma using genome-wide single-nucleotide polymorphism (SNP) data and air pollution exposure. Identified loci were further analyzed at epigenetic and transcriptomic levels. Methods: We used land use regression models to estimate individual air pollution exposure (represented by outdoor NO2 levels) at the birth address and performed a genome-wide interaction study for doctors’ diagnoses of asthma up to 8 years in three European birth cohorts (n = 1,534) with look-up for interaction in two separate North American cohorts, CHS (Children’s Health Study) and CAPPS/SAGE (Canadian Asthma Primary Prevention Study/Study of Asthma, Genetics and Environment) (n = 1,602 and 186 subjects, respectively). We assessed expression quantitative trait locus effects in human lung specimens and blood, as well as associations among air pollution exposure, methylation, and transcriptomic patterns. Measurements and Main Results: In the European cohorts, 186 SNPs had an interaction P < 1 × 10−4 and a look-up evaluation of these disclosed 8 SNPs in 4 loci, with an interaction P < 0.05 in the large CHS study, but not in CAPPS/SAGE. Three SNPs within adenylate cyclase 2 (ADCY2) showed the same direction of the interaction effect and were found to influence ADCY2 gene expression in peripheral blood (P = 4.50 × 10−4). One other SNP with P < 0.05 for interaction in CHS, rs686237, strongly influenced UDP-Gal:betaGlcNAc β-1,4-galactosyltransferase, polypeptide 5 (B4GALT5) expression in lung tissue (P = 1.18 × 10−17). Air pollution exposure was associated with differential discs, large homolog 2 (DLG2) methylation and expression. Conclusions: Our results indicated that gene–environment interactions are important for asthma development and provided supportive evidence for interaction with air pollution for ADCY2, B4GALT5, and DLG2

    Lower baseline performance but greater plasticity of working memory for carriers of the val allele of the COMT Val158Met polymorphism

    Full text link
    Objective: Little is known about genetic contributions to individual differences in cognitive plasticity. Given that the neurotransmitter dopamine is critical for cognition and associated with cognitive plasticity, we investigated the effects of 3 polymorphisms of dopamine-related genes (LMX1A, DRD2, COMT) on baseline performance and plasticity of working memory (WM), perceptual speed, and reasoning. Method: One hundred one younger and 103 older adults underwent approximately 100 days of cognitive training, and extensive testing before and after training. We analyzed the baseline and posttest data using latent change score models. Results: For working memory, carriers of the val allele of the COMT polymorphism had lower baseline performance and larger performance gains from training than carriers of the met allele. There was no significant effect of the other genes or on other cognitive domains. Conclusions: We relate this result to available evidence indicating that met carriers perform better than val carriers in WM tasks taxing maintenance, whereas val carriers perform better at updating tasks. We suggest that val carriers may show larger training gains because updating operations carry greater potential for plasticity than maintenance operations. (DIPF/Orig.

    Individual Exposure to NO2 in Relation to Spatial and Temporal Exposure Indices in Stockholm, Sweden: The INDEX Study

    Get PDF
    Epidemiology studies of health effects from air pollution, as well as impact assessments, typically rely on ambient monitoring data or modelled residential levels. The relationship between these and personal exposure is not clear. To investigate personal exposure to NO2 and its relationship with other exposure metrics and time-activity patterns in a randomly selected sample of healthy working adults (20–59 years) living and working in Stockholm. Personal exposure to NO2 was measured with diffusive samplers in sample of 247 individuals. The 7-day average personal exposure was 14.3 µg/m3 and 12.5 µg/m3 for the study population and the inhabitants of Stockholm County, respectively. The personal exposure was significantly lower than the urban background level (20.3 µg/m3). In the univariate analyses the most influential determinants of individual exposure were long-term high-resolution dispersion-modelled levels of NO2 outdoors at home and work, and concurrent NO2 levels measured at a rural location, difference between those measured at an urban background and rural location and difference between those measured in busy street and at an urban background location, explaining 20, 16, 1, 2 and 4% (R2) of the 7-day personal NO2 variation, respectively. A regression model including these variables explained 38% of the variation in personal NO2 exposure. We found a small improvement by adding time-activity variables to the latter model (R2 = 0.44). The results adds credibility primarily to long-term epidemiology studies that utilise long-term indices of NO2 exposure at home or work, but also indicates that such studies may still suffer from exposure misclassification and dilution of any true effects. In contrast, urban background levels of NO2 are poorly related to individual exposure
    corecore