113 research outputs found
Experimental and discrete element modelling of geocell-stabilized subballast subjected to cyclic loading
This paper presents a study of the load-deformation behaviour of geocell-stabilised sub-ballast subjected to cyclic loading using a novel track process simulation apparatus. The tests were conducted at frequencies varying from 10-30 Hz. This frequency range is generally representative of Australian Standard Gauge trains operating up to 160 km/h. The discrete element method (DEM) was also used to model geocell-reinforced sub-ballast under plane strain conditions. The geocell was modelled by connecting a group of small circular balls together to form the desired geometry and aperture using contact and parallel bonds. Tensile and bending tests were carried out to calibrate the model parameters adopted for simulating geocell. To model irregularly-shaped particles of sub-ballast, clusters of bonded circular balls were used. The simulated load-deformation curves of the geocell-reinforced sub-ballast assembly at varying cyclic load cycles were in good agreement with the experimental observations. The results indicated that geocell decreased the vertical and lateral deformation of sub-ballast assemblies at any given frequency. Furthermore, the DEM can also provide an insight into the distribution of contact force chains, and average contact normal and shear force distributions, which cannot be determined experimentally
The effects of NMDA receptor blockade on TMS-evoked EEG potentials from prefrontal and parietal cortex
Measuring the brain's response to transcranial magnetic stimulation (TMS) with electroencephalography (EEG) offers unique insights into the cortical circuits activated following stimulation, particularly in non-motor regions where less is known about TMS physiology. However, the mechanisms underlying TMS-evoked EEG potentials (TEPs) remain largely unknown. We assessed TEP sensitivity to changes in excitatory neurotransmission mediated by n-methyl-d-aspartate (NMDA) receptors following stimulation of non-motor regions. In fourteen male volunteers, resting EEG and TEPs from prefrontal (PFC) and parietal (PAR) cortex were measured before and after administration of either dextromethorphan (NMDA receptor antagonist) or placebo across two sessions in a double-blinded pseudo-randomised crossover design. At baseline, there were amplitude differences between PFC and PAR TEPs across a wide time range (15-250 ms), however the signals were correlated after ~80 ms, suggesting early peaks reflect site-specific activity, whereas late peaks reflect activity patterns less dependent on the stimulated sites. Early TEP peaks were not reliably altered following dextromethorphan compared to placebo, although findings were less clear for later peaks, and low frequency resting oscillations were reduced in power. Our findings suggest that early TEP peaks (<80 ms) from PFC and PAR reflect stimulation site specific activity that is largely insensitive to changes in NMDA receptor-mediated neurotransmission.Nigel C. Rogasch, Carl Zipser, Ghazaleh Darmani, Tuomas P. Mutanen, Mana Biabani, Christoph Zrenner, Debora Desideri, Paolo Belardinelli, Florian Müller-Dahlhaus, Ulf Zieman
High-density genetic map construction and QTLs analysis of grain yield-related traits in Sesame (Sesamum indicum L.) based on RAD-Seq techonology
An evaluation of the interface behaviour of rail subballast stabilised with geogrids and geomembranes
ChemInform Abstract: Advances in Chemical Studies on Low-Molecular Weight Metabolites of Marine Fungi
Assessment of Interface Shear Behaviour of Sub-ballast with Geosynthetics by Large-scale Direct Shear Test
Designing and comparing cleaning pipelines for TMS-EEG data: a theoretical overview and practical example
Combining transcranial magnetic stimulation (TMS) with electroencephalography (EEG) is growing in popularity as a method for probing the reactivity and connectivity of neural circuits in basic and clinical research. However, using EEG to measure the neural responses to TMS is challenging due to the unique artifacts introduced by combining the two techniques. In this paper, we overview the artifacts present in TMS-EEG data and the offline cleaning methods used to suppress these unwanted signals. We then describe how open science practices, including the development of open-source toolboxes designed for TMS-EEG analysis (e.g., TESA - the TMS-EEG signal analyser), have improved the availability and reproducibility of TMS-EEG cleaning methods. We provide theoretical and practical considerations for designing TMS-EEG cleaning pipelines and then give an example of how to compare different pipelines using TESA. We show that changing even a single step in a pipeline designed to suppress decay artifacts results in TMS-evoked potentials (TEPs) with small differences in amplitude and spatial topography. The variability in TEPs resulting from the choice of cleaning pipeline has important implications for comparing TMS-EEG findings between research groups which use different online and offline approaches. Finally, we discuss the challenges of validating cleaning pipelines and recommend that researchers compare outcomes from TMS-EEG experiments using multiple pipelines to ensure findings are not related to the choice of cleaning methods. We conclude that the continued improvement, availability, and validation of cleaning pipelines is essential to ensure TMS-EEG reaches its full potential as a method for studying human neurophysiology.Nigel C. Rogasch, Mana Biabani, Tuomas P. Mutane
Enhanced versions of the shuffled shepherd optimization algorithm for the optimal design of skeletal structures
- …
