1,266 research outputs found
Farmer preferences for milpa diversity and genetically modified maize in Mexico: a latent class approach
Maize, the second most globally important staple crop after wheat, originated in Mexico, where it is typically grown as part of a set of associated crops and practices called the milpa system. This ancient mode of production is practiced today in ways that vary by cultural context and agro-environment. Milpas generate private economic value, in terms of food security, diet quality and livelihoods, for the twomillion farm households who manage them. Furthermore, milpas generate public economic value by
conserving agrobiodiversity, especially that of maize landraces, which have the potential to contribute unique traits needed by plant breeders for future crop improvement. In this way, milpas contribute to global food security in maize. However, the sustainability of the milpa system has been threatened by offfarm employment opportunities, long-distance migration, the increasing commercialization and intensification of maize production. Most recently, the milpa system has been negatively impacted by the contamination of maize landraces by genetically modified (GM) maize, cultivation of which is currently prohibited in Mexico. Here, we employ a choice experiment to estimate Mexican farmers’ valuation of
three components of agrobiodiversity (crop species richness, maize variety richness and maize landraces), and examine their interest in cultivating GM maize. Choice experiment data, household level social, economic and demographic data, community level economic development data, and information on milpa production characteristics, and farmers’ attitudes and perceptions with regards to GM food and crops were collected from 420 farm households across 17 communities in three states of Mexico. Using these data, we analyzed the heterogeneity of farmer preferences using a latent class model, which can be used
to simultaneously identify sample segments having homogenous preferences for milpa attributes, as well as farmer characteristics affecting preferences. We further identified the characteristics of farmers who are most likely to continue growing maize landraces and managing milpa systems, as well as those least likely to accept GM maize. Specifically, we identified three distinct segments of farmers: (i) Landrace Conservationists derive the highest private economic value from continued management of landraces and the highest economic loss from the possible adoption of GM maize. These farmers are young, dislike GM foods and crops, and are mainly located at the Oaxaca site, where transgenic constructs have been found
in maize landraces. (ii) Milpa Diversity Managers derive the highest economic value from managing all of the agrobiodiversity components of the milpa, and suffer fewer losses from management of GM maize. These are older farmers, who are curious and like to experiment with maize varieties. (iii) Marginalized Maize Producers derive little value from crop species and maize variety richness, receive minimal value from maize landraces, and also experience the smallest negative impact from the adoption of GM maize. These farmers are located in the most isolated communities, have the lowest level of productivity, and oversee the largest milpa areas. They are also the most tightly integrated into the maize output markets. These novel findings have implications for debates concerning the adoption of GM maize in Mexico and
its associated costs and benefits, as well as for the design of targeted, cost-effective conservation programs on farms
Political Performance, Leadership, and Regional Integration in Europe: An Examination of the French and German Roles
Prior research on a regional leader’s role in the deepening of regional integration assumes that economic power translates directly into political capabilities. Relative political capacity among states is central to the creation and deepening of regional integration since it is this capacity that smoothes out the transition from a closed to an open economy. Should a state have low levels of this capacity but desire openness, it will partner with regional leaders given the leaders’ higher relative political capacity. However, the leaders’ subsidy of a partner’s capacity comes at a price. The leaders would trade political capacity for forming a regional bloc along its preferences. A partner will join with a regional leader so long as it is satisfied with the leaders’ preferences. By doing so, it reduces the cost of the subsidy. Our analysis of European integration indicates that French and German relative political capacities are an important factor in the continent’s unifying efforts by conditioning institutional homogeneity and capital stocks mobility, both of which are critical for political and economic union. However, the German effect contrasts with the French effect in that we discover greater German effectiveness in mitigating potential barriers to integration
Magnetodielectric coupling and phonon properties of compressively strained EuTiO3 thin films deposited on LSAT
Compressively strained epitaxial (001) EuTiO3 thin films of tetragonal
symmetry have been deposited on (001) (LaAlO3)_0.29-(SrAl_{1/2}Ta_{1/2}O3)_0.71
(LSAT) substrates by reactive molecular-beam epitaxy. Enhancement of the Neel
temperature by 1 K with 0.9% compressive strain was revealed. The polar phonons
ofthe films have been investigated as a function of temperature and magnetic
field by means of infrared reflectance spectroscopy. All three infrared active
phonons show strongly stiffened frequencies compared to bulk EuTiO3 in
accordance with first principles calculations. The phonon frequencies exhibit
gradual softening on cooling leading to an increase in static permittivity. A
new polar phonon with frequency near the TO1 soft mode was detected below 150
K. The new mode coupled with the TO1 mode was assigned as the optical phonon
from the Brillouin zone edge, which is activated in infrared spectra due to an
antiferrodistortive phase transition and due to simultaneous presence of polar
and/or magnetic nanoclusters. In the antiferromagnetic phase we have observed a
remarkable softening of the lowest-frequency polar phonon under an applied
magnetic field, which qualitatively agrees with first principles calculations.
This demonstrates the strong spin-phonon coupling in EuTiO3, which is
responsible for the pronounced dependence of its static permittivity on
magnetic field in the antiferromagnetic phase.Comment: Submitted to Phys. Rev.
Linear to Circular Polarisation Conversion using Birefringent Properties of Aligned Crystals for Multi-GeV Photons
We present the first experimental results on the use of a thick aligned Si
crystal acting as a quarter wave plate to induce a degree of circular
polarisation in a high energy linearly polarised photon beam. The linearly
polarised photon beam is produced from coherent bremsstrahlung radiation by 178
GeV unpolarised electrons incident on an aligned Si crystal, acting as a
radiator. The linear polarisation of the photon beam is characterised by
measuring the asymmetry in electron-positron pair production in a Ge crystal,
for different crystal orientations. The Ge crystal therefore acts as an
analyser. The birefringence phenomenon, which converts the linear polarisation
to circular polarisation, is observed by letting the linearly polarised photons
beam pass through a thick Si quarter wave plate crystal, and then measuring the
asymmetry in electron-positron pair production again for a selection of
relative angles between the crystallographic planes of the radiator, analyser
and quarter wave plate. The systematics of the difference between the measured
asymmetries with and without the quarter wave plate are predicted by theory to
reveal an evolution in the Stokes parameters from which the appearance of a
circularly polarised component in the photon beam can be demonstrated. The
measured magnitude of the circularly polarised component was consistent with
the theoretical predictions, and therefore is in indication of the existence of
the birefringence effect.Comment: 12 pages, 12 figures, 1 table, REVTeX4 two column, Version for
publicatio
Coherent bremsstrahlung, boherent pair production, birefringence and polarimetry in the 20-170 GeV energy range using aligned crystals
The processes of coherent bremsstrahlung (CB) and coherent pair production
(CPP) based on aligned crystal targets have been studied in the energy range
20-170 GeV. The experimental arrangement allowed for measurements of single
photon properties of these phenomena including their polarization dependences.
This is significant as the theoretical description of CB and CPP is an area of
active theoretical debate and development. With the theoretical approach used
in this paper both the measured cross sections and polarization observables are
predicted very well. This indicates a proper understanding of CB and CPP up to
energies of 170 GeV. Birefringence in CPP on aligned crystals is applied to
determine the polarization parameters in our measurements. New technologies for
high energy photon beam optics including phase plates and polarimeters for
linear and circular polarization are demonstrated in this experiment. Coherent
bremsstrahlung for the strings-on-strings (SOS) orientation yields a larger
enhancement for hard photons than CB for the channeling orientations of the
crystal. Our measurements and our calculations indicate low photon
polarizations for the high energy SOS photons.Comment: 23 pages, 27 figures, 2 tables, REVTeX4 two column
Microstructural evolution under low shear rates during Rheo processing of LM25 alloy
© ASM InternationalMicrostructural features of LM25 alloy processed by two different routes: (1) conventional casting, and(2)shear casting based on inclined heated surface are studied. The microstructures of the primary phase for the shear-cast samples show rosette or ellipsoidal morphologies. Heat transfer of contacting melt with the
inclined tube surface and shear stress exerted on the layers of the melt as result of gravitational force are crucial parameters for the microstructural evolution. Compared to those produced by conventional casting, shear-cast samples have a much improved tensile strength and ductility due to globular microstructure
Coherent Pair Production by Photons in the 20-170 GeV Energy Range Incident on Crystals and Birefringence
The cross section for coherent pair production by linearly polarised photons
in the 20-170 GeV energy range was measured for photon aligned incidence on
ultra-high quality diamond and germanium crystals. The theoretical description
of coherent bremsstrahlung and coherent pair production phenomena is an area of
active theoretical debate and development. However, under our experimental
conditions, the theory predicted the combined cross section and polarisation
experimental observables very well indeed. In macroscopic terms, our experiment
measured a birefringence effect in pair production in a crystal. This study of
this effect also constituted a measurement of the energy dependent linear
polarisation of photons produced by coherent bremsstrahlung in aligned
crystals. New technologies for manipulating high energy photon beams can be
realised based on an improved understanding of QED phenomena at these energies.
In particular, this experiment demonstrates an efficient new polarimetry
technique. The pair production measurements were done using two independent
methods simultaneously. The more complex method using a magnet spectrometer
showed that the simpler method using a multiplicity detector was also viable.Comment: 10 pages, 13 figures, 1 table, REVTeX4 two column, Version for
publicatio
- …
