26 research outputs found
Monte-Carlo simulation of neutron transmission through nanocomposite materials for neutron-optics applications
Nanocomposites enable us to tune parameters that are crucial for use of such
materials for neutron-optics applications such as diffraction gratings by
careful choice of properties such as species (isotope) and concentration of
contained nanoparticles. Nanocomposites for neutron optics have so far
successfully been deployed in protonated form, containing high amounts of H
atoms, which exhibit rather strong neutron absorption and incoherent
scattering. At a future stage of development, chemicals containing H could
be replaced by components with more favourable isotopes, such as H or
F. In this note, we present results of Monte-Carlo simulations of the
transmissivity of various nanocomposite materials for thermal and very-cold
neutron spectra. The results are compared to experimental transmission data.
Our simulation results for deuterated and fluorinated nanocomposite materials
predict a decrease of absorption- and scattering-losses down to about 2 % for
very-cold neutrons.Comment: submitted to NIM
