745 research outputs found
TGF-beta 1 induces human alveolar epithelial to mesenchymal cell transition (EMT)
Background: Fibroblastic foci are characteristic features in lung parenchyma of patients with idiopathic pulmonary fibrosis (IPF). They comprise aggregates of mesenchymal cells which underlie sites of unresolved epithelial injury and are associated with progression of fibrosis. However, the cellular origins of these mesenchymal phenotypes remain unclear. We examined whether the potent fibrogenic cytokine TGF-β1 could induce epithelial mesenchymal transition (EMT) in the human alveolar epithelial cell line, A549, and investigated the signaling pathway of TGF-β1-mediated EMT.
Methods: A549 cells were examined for evidence of EMT after treatment with TGF-β1. EMT was assessed by: morphology under phase-contrast microscopy; Western analysis of cell lysates for expression of mesenchymal phenotypic markers including fibronectin EDA (Fn-EDA), and expression of epithelial phenotypic markers including E-cadherin (E-cad). Markers of fibrogenesis, including collagens and connective tissue growth factor (CTGF) were also evaluated by measuring mRNA level using RT-PCR, and protein by immunofluorescence or Western blotting. Signaling pathways for EMT were characterized by Western analysis of cell lysates using monoclonal antibodies to detect phosphorylated Erk1/2 and Smad2 after TGF-β1 treatment in the presence or absence of MEK inhibitors. The role of Smad2 in TGF-β1-mediated EMT was investigated using siRNA.
Results: The data showed that TGF-β1, but not TNF-α or IL-1β, induced A549 cells with an alveolar epithelial type II cell phenotype to undergo EMT in a time-and concentration-dependent manner. The process of EMT was accompanied by morphological alteration and expression of the fibroblast phenotypic markers Fn-EDA and vimentin, concomitant with a downregulation of the epithelial phenotype marker E-cad. Furthermore, cells that had undergone EMT showed enhanced expression of markers of fibrogenesis including collagens type I and III and CTGF. MMP-2 expression was also evidenced. TGF-β1-induced EMT occurred through phosphorylation of Smad2 and was inhibited by Smad2 gene silencing; MEK inhibitors failed to attenuate either EMT-associated Smad2 phosphorylation or the observed phenotypic changes.
Conclusion: Our study shows that TGF-β1 induces A549 alveolar epithelial cells to undergo EMT via Smad2 activation. Our data support the concept of EMT in lung epithelial cells, and suggest the need for further studies to investigate the phenomenon
Recommended from our members
Genetic variation in the HLA region is associated with susceptibility to herpes zoster.
Herpes zoster, commonly referred to as shingles, is caused by the varicella zoster virus (VZV). VZV initially manifests as chicken pox, most commonly in childhood, can remain asymptomatically latent in nerve tissues for many years and often re-emerges as shingles. Although reactivation may be related to immune suppression, aging and female sex, most inter-individual variability in re-emergence risk has not been explained to date. We performed a genome-wide association analyses in 22,981 participants (2280 shingles cases) from the electronic Medical Records and Genomics Network. Using Cox survival and logistic regression, we identified a genomic region in the combined and European ancestry groups that has an age of onset effect reaching genome-wide significance (P>1.0 × 10(-8)). This region tags the non-coding gene HCP5 (HLA Complex P5) in the major histocompatibility complex. This gene is an endogenous retrovirus and likely influences viral activity through regulatory functions. Variants in this genetic region are known to be associated with delay in development of AIDS in people infected by HIV. Our study provides further suggestion that this region may have a critical role in viral suppression and could potentially harbor a clinically actionable variant for the shingles vaccine
A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease
Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz
Recommended from our members
Genome-wide association study of primary open-angle glaucoma in continental and admixed African populations.
Primary open angle glaucoma (POAG) is a complex disease with a major genetic contribution. Its prevalence varies greatly among ethnic groups, and is up to five times more frequent in black African populations compared to Europeans. So far, worldwide efforts to elucidate the genetic complexity of POAG in African populations has been limited. We conducted a genome-wide association study in 1113 POAG cases and 1826 controls from Tanzanian, South African and African American study samples. Apart from confirming evidence of association at TXNRD2 (rs16984299; OR[T] 1.20; P = 0.003), we found that a genetic risk score combining the effects of the 15 previously reported POAG loci was significantly associated with POAG in our samples (OR 1.56; 95% CI 1.26-1.93; P = 4.79 × 10-5). By genome-wide association testing we identified a novel candidate locus, rs141186647, harboring EXOC4 (OR[A] 0.48; P = 3.75 × 10-8), a gene transcribing a component of the exocyst complex involved in vesicle transport. The low frequency and high degree of genetic heterogeneity at this region hampered validation of this finding in predominantly West-African replication sets. Our results suggest that established genetic risk factors play a role in African POAG, however, they do not explain the higher disease load. The high heterogeneity within Africans remains a challenge to identify the genetic commonalities for POAG in this ethnicity, and demands studies of extremely large size
Testing the role of predicted gene knockouts in human anthropometric trait variation
National Heart, Lung, and Blood Institute (NHLBI)
S.L. is funded by a Canadian Institutes of Health Research
Banting doctoral scholarship. G.L. is funded by Genome Canada
and Génome Québec; the Canada Research Chairs program; and
the Montreal Heart Institute Foundation. C.M.L. is supported by
Wellcome Trust (grant numbers 086596/Z/08/Z, 086596/Z/08/A);
and the Li Ka Shing Foundation. N.S. is funded by National Institutes
of Health (grant numbers HL088456, HL111089, HL116747).
The Mount Sinai BioMe Biobank Program is supported by the Andrea
and Charles Bronfman Philanthropies. GO ESP is supported
by NHLBI (RC2 HL-103010 to HeartGO, RC2 HL-102923 to LungGO,
RC2 HL-102924 to WHISP). The ESP exome sequencing was
performed through NHLBI (RC2 HL-102925 to BroadGO, RC2 HL-
102926 to SeattleGO). EGCUT work was supported through the
Estonian Genome Center of University of Tartu by the Targeted
Financing from the Estonian Ministry of Science and Education
(grant number SF0180142s08); the Development Fund of the University
of Tartu (grant number SP1GVARENG); the European Regional
Development Fund to the Centre of Excellence in
Genomics (EXCEGEN) [grant number 3.2.0304.11-0312]; and
through FP7 (grant number 313010). EGCUT were further supported
by the US National Institute of Health (grant number
R01DK075787). A.K.M. was supported by an American Diabetes
Association Mentor-Based Postdoctoral Fellowship (#7-12-MN-
02). The BioVU dataset used in the analyses described were obtained
from Vanderbilt University Medical Centers BioVU which
is supported by institutional funding and by the Vanderbilt CTSA
grant ULTR000445 from NCATS/NIH. Genome-wide genotyping
was funded by NIH grants RC2GM092618 from NIGMS/OD and
U01HG004603 from NHGRI/NIGMS. Funding to pay the Open Access
publication charges for this article was provided by a block
grant from Research Councils UK to the University of Cambridge
Testing the role of predicted gene knockouts in human anthropometric trait variation
National Heart, Lung, and Blood Institute (NHLBI)
S.L. is funded by a Canadian Institutes of Health Research
Banting doctoral scholarship. G.L. is funded by Genome Canada
and Génome Québec; the Canada Research Chairs program; and
the Montreal Heart Institute Foundation. C.M.L. is supported by
Wellcome Trust (grant numbers 086596/Z/08/Z, 086596/Z/08/A);
and the Li Ka Shing Foundation. N.S. is funded by National Institutes
of Health (grant numbers HL088456, HL111089, HL116747).
The Mount Sinai BioMe Biobank Program is supported by the Andrea
and Charles Bronfman Philanthropies. GO ESP is supported
by NHLBI (RC2 HL-103010 to HeartGO, RC2 HL-102923 to LungGO,
RC2 HL-102924 to WHISP). The ESP exome sequencing was
performed through NHLBI (RC2 HL-102925 to BroadGO, RC2 HL-
102926 to SeattleGO). EGCUT work was supported through the
Estonian Genome Center of University of Tartu by the Targeted
Financing from the Estonian Ministry of Science and Education
(grant number SF0180142s08); the Development Fund of the University
of Tartu (grant number SP1GVARENG); the European Regional
Development Fund to the Centre of Excellence in
Genomics (EXCEGEN) [grant number 3.2.0304.11-0312]; and
through FP7 (grant number 313010). EGCUT were further supported
by the US National Institute of Health (grant number
R01DK075787). A.K.M. was supported by an American Diabetes
Association Mentor-Based Postdoctoral Fellowship (#7-12-MN-
02). The BioVU dataset used in the analyses described were obtained
from Vanderbilt University Medical Centers BioVU which
is supported by institutional funding and by the Vanderbilt CTSA
grant ULTR000445 from NCATS/NIH. Genome-wide genotyping
was funded by NIH grants RC2GM092618 from NIGMS/OD and
U01HG004603 from NHGRI/NIGMS. Funding to pay the Open Access
publication charges for this article was provided by a block
grant from Research Councils UK to the University of Cambridge
Recommended from our members
Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution.
Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants
1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function.
HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10(-8) previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples
- …
